
Package index
-
msaenet.sim.gaussian() - Generate Simulation Data for Benchmarking Sparse Regressions (Gaussian Response)
-
msaenet.sim.binomial() - Generate Simulation Data for Benchmarking Sparse Regressions (Binomial Response)
-
msaenet.sim.poisson() - Generate Simulation Data for Benchmarking Sparse Regressions (Poisson Response)
-
msaenet.sim.cox() - Generate Simulation Data for Benchmarking Sparse Regressions (Cox Model)
Model fitting
Fit adaptive and multi-step estimation models based on elastic-net, MCP-net, or SCAD-net penalties.
-
aenet() - Adaptive Elastic-Net
-
msaenet() - Multi-Step Adaptive Elastic-Net
-
amnet() - Adaptive MCP-Net
-
msamnet() - Multi-Step Adaptive MCP-Net
-
asnet() - Adaptive SCAD-Net
-
msasnet() - Multi-Step Adaptive SCAD-Net
-
msaenet-package - msaenet: Multi-Step Adaptive Estimation Methods for Sparse Regressions
-
plot(<msaenet>) - Plot msaenet Model Objects
-
predict(<msaenet>) - Make Predictions from an msaenet Model
-
print(<msaenet>) - Print msaenet Model Information
-
msaenet.nzv() - Get Indices of Non-Zero Variables
-
msaenet.nzv.all() - Get Indices of Non-Zero Variables in All Steps
-
msaenet.tp() - Get the Number of True Positive Selections
-
msaenet.fp() - Get the Number of False Positive Selections
-
msaenet.fn() - Get the Number of False Negative Selections
-
coef(<msaenet>) - Extract Model Coefficients
-
msaenet.rmse() - Root Mean Squared Error (RMSE)
-
msaenet.mse() - Mean Squared Error (MSE)
-
msaenet.mae() - Mean Absolute Error (MAE)
-
msaenet.rmsle() - Root Mean Squared Logarithmic Error (RMSLE)