Skip to contents

Data simulation

Generate simulation data.

msaenet.sim.gaussian()
Generate Simulation Data for Benchmarking Sparse Regressions (Gaussian Response)
msaenet.sim.binomial()
Generate Simulation Data for Benchmarking Sparse Regressions (Binomial Response)
msaenet.sim.poisson()
Generate Simulation Data for Benchmarking Sparse Regressions (Poisson Response)
msaenet.sim.cox()
Generate Simulation Data for Benchmarking Sparse Regressions (Cox Model)

Model fitting

Fit adaptive and multi-step estimation models based on elastic-net, MCP-net, or SCAD-net penalties.

aenet()
Adaptive Elastic-Net
msaenet()
Multi-Step Adaptive Elastic-Net
amnet()
Adaptive MCP-Net
msamnet()
Multi-Step Adaptive MCP-Net
asnet()
Adaptive SCAD-Net
msasnet()
Multi-Step Adaptive SCAD-Net
msaenet-package
msaenet: Multi-Step Adaptive Estimation Methods for Sparse Regressions

Inference and plotting

Visualize the fitted model and predict on new data.

plot(<msaenet>)
Plot msaenet Model Objects
predict(<msaenet>)
Make Predictions from an msaenet Model
print(<msaenet>)
Print msaenet Model Information

Model inspection

Inspect the fitted models with more details.

msaenet.nzv()
Get Indices of Non-Zero Variables
msaenet.nzv.all()
Get Indices of Non-Zero Variables in All Steps
msaenet.tp()
Get the Number of True Positive Selections
msaenet.fp()
Get the Number of False Positive Selections
msaenet.fn()
Get the Number of False Negative Selections
coef(<msaenet>)
Extract Model Coefficients

Model evaluation

Compute performance evaluation metrics.

msaenet.rmse()
Root Mean Squared Error (RMSE)
msaenet.mse()
Mean Squared Error (MSE)
msaenet.mae()
Mean Absolute Error (MAE)
msaenet.rmsle()
Root Mean Squared Logarithmic Error (RMSLE)