Generate Simulation Data for Benchmarking Sparse Regressions (Gaussian Response)
Source:R/msaenet-sim.R
msaenet.sim.gaussian.Rd
Generate simulation data (Gaussian case) following the settings in Xiao and Xu (2015).
Usage
msaenet.sim.gaussian(
n = 300,
p = 500,
rho = 0.5,
coef = rep(0.2, 50),
snr = 1,
p.train = 0.7,
seed = 1001
)
Arguments
- n
Number of observations.
- p
Number of variables.
- rho
Correlation base for generating correlated variables.
- coef
Vector of non-zero coefficients.
- snr
Signal-to-noise ratio (SNR). SNR is defined as $$ \frac{Var(E(y | X))}{Var(Y - E(y | X))} = \frac{Var(f(X))}{Var(\varepsilon)} = \frac{Var(X^T \beta)}{Var(\varepsilon)} = \frac{Var(\beta^T \Sigma \beta)}{\sigma^2}. $$
- p.train
Percentage of training set.
- seed
Random seed for reproducibility.
References
Nan Xiao and Qing-Song Xu. (2015). Multi-step adaptive elastic-net: reducing false positives in high-dimensional variable selection. Journal of Statistical Computation and Simulation 85(18), 3755–3765.
Author
Nan Xiao <https://nanx.me>