Model stacking with a two-layer architecture: first layer being boosted tree models fitted by xgboost, lightgbm, and catboost; second layer being a logistic regression model.
Arguments
- x
Predictor matrix.
- y
Response vector.
- params
A list of optimal parameter objects for boosted tree models derived from
cv_xgboost()
,cv_lightgbm()
, andcv_catboost()
. The order does not matter.- n_folds
Number of folds. Default is 5.
- seed
Random seed for reproducibility.
- verbose
Show progress?
Examples
sim_data <- msaenet::msaenet.sim.binomial(
n = 1000,
p = 50,
rho = 0.6,
coef = rnorm(25, mean = 0, sd = 10),
snr = 1,
p.train = 0.8,
seed = 42
)
params_xgboost <- structure(
list("nrounds" = 200, "eta" = 0.05, "max_depth" = 3),
class = c("cv_params", "cv_xgboost")
)
params_lightgbm <- structure(
list("num_iterations" = 200, "max_depth" = 3, "learning_rate" = 0.05),
class = c("cv_params", "cv_lightgbm")
)
params_catboost <- structure(
list("iterations" = 100, "depth" = 3),
class = c("cv_params", "cv_catboost")
)
fit <- stackgbm(
sim_data$x.tr,
sim_data$y.tr,
params = list(
params_xgboost,
params_lightgbm,
params_catboost
)
)
predict(fit, newx = sim_data$x.te)
#> $prob
#> [1] 0.2558388 0.8338682 0.4763339 0.7455671 0.7555156 0.4501782 0.6574596
#> [8] 0.6873576 0.6074110 0.7224988 0.6203971 0.1248982 0.1049472 0.8220409
#> [15] 0.6851230 0.5846914 0.5835061 0.5298453 0.7929988 0.5336065 0.2955900
#> [22] 0.5721034 0.5700517 0.3002608 0.6401235 0.1874141 0.7710912 0.1618248
#> [29] 0.8386701 0.7695612 0.4402864 0.1992083 0.6331777 0.8200990 0.4218807
#> [36] 0.2643347 0.8592997 0.7089676 0.7501508 0.7205304 0.2207929 0.7868003
#> [43] 0.8154183 0.1770900 0.2803560 0.6606686 0.8833260 0.7457455 0.8560005
#> [50] 0.7094953 0.3406476 0.1916315 0.7985752 0.1767514 0.3400872 0.4278666
#> [57] 0.6809678 0.6107685 0.8609919 0.8872117 0.1540449 0.1187717 0.1254577
#> [64] 0.1908997 0.3769435 0.8531140 0.5552780 0.2471893 0.7503111 0.1293596
#> [71] 0.7032663 0.7448972 0.7595124 0.7960718 0.4391058 0.1525627 0.7314911
#> [78] 0.2305579 0.7240893 0.2710769 0.4536461 0.8297858 0.4800380 0.7763404
#> [85] 0.8802614 0.1624562 0.6632567 0.6769455 0.2806485 0.2053429 0.8185189
#> [92] 0.5896262 0.1936939 0.7244081 0.3690217 0.8760344 0.1216465 0.3907955
#> [99] 0.5570389 0.2036074 0.4433538 0.8425489 0.3575423 0.3402744 0.8941558
#> [106] 0.4540316 0.1979951 0.8648425 0.5952020 0.1428748 0.1353298 0.8469107
#> [113] 0.1137851 0.6688770 0.8405698 0.7519721 0.5995734 0.8981029 0.3791713
#> [120] 0.1964506 0.1208158 0.5446650 0.6865582 0.3288822 0.6390536 0.8760625
#> [127] 0.7542827 0.5631108 0.8979796 0.7153561 0.7489923 0.8415314 0.7956702
#> [134] 0.6311619 0.7230946 0.4559731 0.4489978 0.2873997 0.2933466 0.2392487
#> [141] 0.4506560 0.7583894 0.8599918 0.7691481 0.8316580 0.7875238 0.7244116
#> [148] 0.8302520 0.2416988 0.4758154 0.4926572 0.4272542 0.6020090 0.5788977
#> [155] 0.1144688 0.6329210 0.8999377 0.6190683 0.3689636 0.6348878 0.5609031
#> [162] 0.6726094 0.8749991 0.8718587 0.7209973 0.8046897 0.1514194 0.8438966
#> [169] 0.7098198 0.7401077 0.7184328 0.4137849 0.5942843 0.1694689 0.8406573
#> [176] 0.2947972 0.2482770 0.3138458 0.8490076 0.6213917 0.2340607 0.5202677
#> [183] 0.4311952 0.1190806 0.1396242 0.6837508 0.6065134 0.8807227 0.7196326
#> [190] 0.7747397 0.5394947 0.5879715 0.4708010 0.3819530 0.2171342 0.5964147
#> [197] 0.1617649 0.7513241 0.8646198 0.1626774
#>
#> $resp
#> [1] 0 1 0 1 1 0 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 1 1 0 1 0 1 0 1 1 0 0 1 1 0 0 1
#> [38] 1 1 1 0 1 1 0 0 1 1 1 1 1 0 0 1 0 0 0 1 1 1 1 0 0 0 0 0 1 1 0 1 0 1 1 1 1
#> [75] 0 0 1 0 1 0 0 1 0 1 1 0 1 1 0 0 1 1 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1 0 0
#> [112] 1 0 1 1 1 1 1 0 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1
#> [149] 0 0 0 0 1 1 0 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 0 1 0 1 0 0 0 1 1 0 1 0 0 0
#> [186] 1 1 1 1 1 1 1 0 0 0 1 0 1 1 0
#>