Train lightgbm model
Examples
sim_data <- msaenet::msaenet.sim.binomial(
n = 100,
p = 10,
rho = 0.6,
coef = rnorm(5, mean = 0, sd = 10),
snr = 1,
p.train = 0.8,
seed = 42
)
fit <- suppressWarnings(
lightgbm_train(
data = sim_data$x.tr,
label = sim_data$y.tr,
params = list(
objective = "binary",
learning_rate = 0.1,
num_iterations = 100,
max_depth = 3,
num_leaves = 2^3 - 1,
num_threads = 1
),
verbose = -1
)
)
fit
#> LightGBM Model (100 trees)
#> Objective: binary
#> Fitted to dataset with 10 columns