This function generates a parameter grid to be used in the cross-validation of gradient boosting decision tree (GBDT) models.
Arguments
- n_iterations
A numeric vector of the number of iterations (trees) for the GBDT model. This is equivalent to
nroundsin XGBoost,num_iterationsin LightGBM, anditerationsin CatBoost.- max_depth
A numeric vector of the maximum tree depths. This parameter is equivalent to
max_depthin XGBoost and LightGBM, anddepthin CatBoost.- learning_rate
A numeric vector of learning rates for the GBDT model. This parameter is equivalent to
etain XGBoost,learning_ratein LightGBM, and ignored in CatBoost.
