Train the model
Usage
catboost_train(learn_pool, test_pool = NULL, params = list())
Arguments
- learn_pool
Training dataset.
- test_pool
Testing dataset.
- params
A list of training parameters.
Examples
sim_data <- msaenet::msaenet.sim.binomial(
n = 100,
p = 10,
rho = 0.6,
coef = rnorm(5, mean = 0, sd = 10),
snr = 1,
p.train = 0.8,
seed = 42
)
x_train <- catboost_load_pool(data = sim_data$x.tr, label = sim_data$y.tr)
fit <- catboost_train(
x_train,
NULL,
params = list(
loss_function = "Logloss",
iterations = 100,
depth = 3,
logging_level = "Silent"
)
)
fit
#> CatBoost model (100 trees)
#> Loss function: Logloss
#> Fit to 10 feature(s)