Maximum homogeneity clustering for one-dimensional data
Arguments
- x
Numeric vector, samples to be clustered.
- k
Integer, number of clusters.
- w
Numeric vector, sample weights (optional). Note that the weights here should be sampling weights (for example, a certain proportion of the population), not frequency weights (for example, number of occurrences).
- sort
Should we sort
x(andw) before clustering? Default isTRUE. Otherwise the order of the data is respected.
References
Fisher, Walter D. 1958. On Grouping for Maximum Homogeneity. Journal of the American Statistical Association 53 (284): 789–98.
Examples
set.seed(42)
x <- sample(c(
rnorm(50, sd = 0.2),
rnorm(50, mean = 1, sd = 0.3),
rnorm(100, mean = -1, sd = 0.25)
))
oneclust(x, 3)
#> $cluster
#> [1] 3 1 3 2 1 1 1 3 2 3 2 2 3 1 1 1 1 1 2 1 1 1 1 1 2 3 2 2 1 1 1 2 1 1 1 3 1
#> [38] 1 3 1 3 2 1 1 3 2 3 2 1 1 3 3 1 2 3 3 1 1 1 1 3 3 1 1 1 1 1 3 2 2 2 2 2 1
#> [75] 1 2 3 2 1 2 1 3 2 3 1 2 3 1 3 1 1 2 1 1 2 3 3 1 2 3 2 3 1 1 2 1 3 1 1 1 1
#> [112] 3 1 1 1 1 1 3 1 2 2 1 1 2 1 1 2 2 2 1 2 1 2 1 3 2 2 1 3 3 2 2 2 1 1 3 1 1
#> [149] 3 1 2 3 2 3 1 3 1 2 1 1 2 3 1 2 2 3 2 1 1 3 3 1 1 1 1 3 1 3 1 3 1 2 3 2 1
#> [186] 3 1 1 1 1 1 1 1 1 1 2 3 3 1 1
#>
#> $cut
#> [1] 1 101 152
#>
