Maximum homogeneity clustering for one-dimensional data
Arguments
- x
Numeric vector, samples to be clustered.
- k
Integer, number of clusters.
- w
Numeric vector, sample weights (optional). Note that the weights here should be sampling weights (for example, a certain proportion of the population), not frequency weights (for example, number of occurrences).
- sort
Should we sort
x
(andw
) before clustering? Default isTRUE
. Otherwise the order of the data is respected.
References
Fisher, Walter D. 1958. On Grouping for Maximum Homogeneity. Journal of the American Statistical Association 53 (284): 789--98.
Examples
set.seed(42)
x <- sample(c(
rnorm(50, sd = 0.2),
rnorm(50, mean = 1, sd = 0.3),
rnorm(100, mean = -1, sd = 0.25)
))
oneclust(x, 3)
#> $cluster
#> [1] 3 1 3 2 1 1 1 3 2 3 2 2 3 1 1 1 1 1 2 1 1 1 1 1 2 3 2 2 1 1 1 2 1 1 1 3 1
#> [38] 1 3 1 3 2 1 1 3 2 3 2 1 1 3 3 1 2 3 3 1 1 1 1 3 3 1 1 1 1 1 3 2 2 2 2 2 1
#> [75] 1 2 3 2 1 2 1 3 2 3 1 2 3 1 3 1 1 2 1 1 2 3 3 1 2 3 2 3 1 1 2 1 3 1 1 1 1
#> [112] 3 1 1 1 1 1 3 1 2 2 1 1 2 1 1 2 2 2 1 2 1 2 1 3 2 2 1 3 3 2 2 2 1 1 3 1 1
#> [149] 3 1 2 3 2 3 1 3 1 2 1 1 2 3 1 2 2 3 2 1 1 3 3 1 1 1 1 3 1 3 1 3 1 2 3 2 1
#> [186] 3 1 1 1 1 1 1 1 1 1 2 3 3 1 1
#>
#> $cut
#> [1] 1 101 152
#>