Calculate Drug Molecule Similarity Derived by Maximum Common Substructure Search
Source:R/702-calcDrugMCSSim.R
calcDrugMCSSim.Rd
Calculate Drug Molecule Similarity Derived by Maximum Common Substructure Search
Usage
calcDrugMCSSim(
mol1,
mol2,
type = c("smile", "sdf"),
plot = FALSE,
al = 0,
au = 0,
bl = 0,
bu = 0,
matching.mode = "static",
...
)
Arguments
- mol1
The first molecule. R character string object containing the molecule. See examples.
- mol2
The second molecule. R character string object containing the molecule. See examples.
- type
The input molecule format, 'smile' or 'sdf'.
- plot
Logical. Should we plot the two molecules and their maximum common substructure?
- al
Lower bound for the number of atom mismatches. Default is 0.
- au
Upper bound for the number of atom mismatches. Default is 0.
- bl
Lower bound for the number of bond mismatches. Default is 0.
- bu
Upper bound for the number of bond mismatches. Default is 0.
- matching.mode
Three modes for bond matching are supported:
'static'
,'aromatic'
, and'ring'
.- ...
Other graphical parameters
Value
A list containing the detail MCS information and similarity values. The numeric similarity value includes Tanimoto coefficient and overlap coefficient.
Details
This function calculate drug molecule similarity derived by
maximum common substructure search. The maximum common substructure
search algorithm is provided by the fmcsR
package.
References
Wang, Y., Backman, T. W., Horan, K., & Girke, T. (2013). fmcsR: mismatch tolerant maximum common substructure searching in R. Bioinformatics, 29(21), 2792–2794.
Examples
mol1 = 'CC(C)CCCCCC(=O)NCC1=CC(=C(C=C1)O)OC'
mol2 = 'O=C(NCc1cc(OC)c(O)cc1)CCCC/C=C/C(C)C'
mol3 = readChar(system.file('compseq/DB00859.sdf', package = 'Rcpi'), nchars = 1e+6)
mol4 = readChar(system.file('compseq/DB00860.sdf', package = 'Rcpi'), nchars = 1e+6)
if (FALSE) { # \dontrun{
sim1 = calcDrugMCSSim(mol1, mol2, type = 'smile')
sim2 = calcDrugMCSSim(mol3, mol4, type = 'sdf', plot = TRUE)
print(sim1[[2]]) # Tanimoto Coefficient
print(sim2[[3]]) # Overlap Coefficient
} # }