

Persistent Reproducible Reporting

Nan Xiao

Genomic Data Scientist, Seven Bridges

Reproducible Research

R Markdown + knitr to the rescue

Reproducibility

... has always been a concern in both <u>academia</u> & industry.

docker

Cancer Genomics Cloud

www.cancergenomicscloud.org

Hundreds of automated analysis workflows for petabyte-scale data from The Cancer Genome Atlas.

Product & Tech Innovations in CGC

C

OS-level <u>reproducibility</u> & <u>persistency</u> for <u>reports</u>.

Dockerize documents as easy as 1-2-3

liftr extends the R Markdown metadata format, introducing additional options for containerizing and rendering reports.

By running lift() on the RMD file, liftr parses the metadata fields appeared in the R Markdown document; then generates the Dockerfile.

By running render_docker(), liftr will build the Docker image, run the container, and render the R Markdown document.

•

Dockerize documents as easy as 1-2-3

library("liftr")
input = "demo.Rmd"

lift(input)
render_docker(input)

Generate Dockerfile
Render report with Docker

purge_image(input)
push_image(input)

Clean up Docker image
Push image to registry (devel)

Demo: RNA-Seq Data Analysis

Example workflow from Bioconductor

- RNA-Seq: biotechnology for measuring the expression of genes. It can help identify key genes in cancer.
- TBs of RNA-Seq data are generated. Computational tools and workflows are developed to analyze such data.
- How to ensure such reports are reproducible through time, when datasets, analysis tools are both evolving?
- Code available from: bit.ly/liftrdemo

Step 1

0

Add liftr metadata to the R Markdown document: base image, system

dependencies, package dependencies, etc.

Step 2

 \odot

Use liftr::lift to generate Dockerfile

Step 3

liftr::render_docker will build the image, run the container, and render into PDF/HTML/Docx.

Re-compilation: cached image layers are used to improve speed.

Remove the used image, or push to registry.

Future works

- Cloud-based rendering and containerization services for dynamic documents
- Democratize reproducible report creation/sharing

Thank You!

liftr.me

@road2stat #dockercon #liftr

