Introduction to Reproducible Research in Bioinformatics

Nan Xiao @road2stat

CRI Bioinformatics Workshop
About me

• http://nanx.me

• Statistics background

• Previous experience in statistical machine learning, systems pharmacology, translational bioinformatics

• R developer (7 R/Bioconductor packages; 4 web applications; 4 translated books)
Agenda

• Concept
• Principles
• Tools
• Challenges
We love copy & paste
Data updated today …
Concept

- Allowing other researchers to replicate your (computational) analysis of the data
- Reproducibility doesn’t ensure correctness, but still helpful
- Not only required in bioinformatics research, but also required in statistical research
Why is RR important?

• Reduce (honest) mistakes
• Improve productivity for the long run
• More likely to be used, extended, and cited
General Principles of RR

- Keep track of how every result was produced:
 - Avoid manual data manipulation
 - Version control all custom code
 - Provide public access to data and code
One Principle:
Everything Automated with Code
Tools

1. Workflow automation: GNU make + CLI tools instead of GUI tools; Workflow & pipeline systems

2. R / Python packages instead of code snippets

3. knitr / IPython Notebook + Markdown instead of Word

4. Code version control: git / GitHub

5. Package dependency management: packrat / virtualenv

6. System dependency management: Docker
1. Make & its friends

- Make can be used for computational project workflow automation
- Organises code & data dependencies naturally
- Works seamlessly with Linux/Unix CLI tools, such as sed, awk, and many others
Example Makefile

code1.R → fig1.pdf

fig1.pdf → report.pdf

code2.R → fig2.pdf

fig2.pdf → report.pdf

report.tex → report.pdf
Example Makefile for a LaTeX report

report.pdf: report.tex img/fig1.pdf img/fig2.pdf
pdflatex report

Run R code to reproduce figures

img/fig1.pdf: Rcode/code1.R
 cd Rcode; R CMD BATCH code1.R code1.Rout

img/fig2.pdf: Rcode/code2.R
 cd Rcode; R CMD BATCH code2.R code2.Rout
Workflow Systems

• Galaxy
• bpipe
• systemPipeR
• Rabix
• … and many others:
• https://github.com/pditommaso/awesome-pipeline
Galaxy Workflow
Pipeline in NCI Cancer Genomics Cloud
http://www.cancergenomicscloud.org
If you want to go beyond CLI and Galaxy … R / Python packages can save the day.
2. R Packages

- readr: data loading
- httr: web scraping
- tidyr: data cleaning
- dplyr: data mangling
- stringr: string data
- lubridate: time data
- ggplot2: visualization
- devtools: package dev
- roxygen2: documentation
- testthat: unit testing
3. knitr

- knitr report = code + text

Let’s explore our ChIP-seq’s peak length:
```
```{r}
counts = read.table("peaks.broadPeak")
hist(counts$end - counts$start)
```

The median of the peak length is
`r median(counts$end - counts$start)`.
Demo with RStudio

- RStudio
- knitr + RMarkdown
- Analyze ChIP-seq peak length distribution
4. Code Version Control

Easy to see when and where the code was changed
5. Package Dependency

- R: packrat
- Python: virtualenv
- Manages project package dependency, to make sure every newly created environment has the same versions of packages
6. System Dependency
Challenges

• Allow for some level of interactivity: test & debug (knitr, IPython Notebook)

• Handling large-scale computation (Docker + AWS)

• Dependency deprecation (packrat)

• OS-level reproducibility (Docker)

• Data privacy concerns
Idea

- A framework for dockerizing R markdown documents
- Built-in Rabix (bioinformatics pipelines) support
- Reproducible bioinformatics and statistical analysis
lift("foo.Rmd") \rightarrow drender("foo.Rmd") \rightarrow \text{Read and share!}

---
liftr:
syslib:
  - samtools
biocpkg:
  - Rsamtools
  - Gviz
rabix: true
rabix_json: "bwa.json"
---

Rmd Documents with `liftr` options in metadata

Generated Dockerfile (Rabixfile)

Rendered HTML/ PDF/Docx Reports
Further Readings

Implementing Reproducible Research
Edited by Victoria Stodden, Friedrich Leisch, Roger D. Peng

Reproducible Research with R and RStudio
Second Edition
By Christopher Gandrud