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Abstract

We consider several industry group sequential trials and associated issues over
the last 30 years. Generally, group sequential design has provided a great deal of
flexibility to overcome many challenges in a relatively straightforward way compared
to more complex adaptive designs. Among the issues considered are the timing of and
boundaries for interim and final analyses, dealing with multiple hypotheses created
by dose groups, populations and endpoints. Tools for design and execution will also
be discussed.
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1 Introduction

Group sequential design enables analysis of accumulating data from a clinical trial as it

is ongoing. There are many summaries of the use of such designs, e.g., Ellenberg et al.

(2019). As noted there, group sequential trials became common at the National Institutes

of Health in the 1970’s, in cancer clinical trials in the 1980’s and in industry trials in the

1990’s. In this article, we review industry experience that we hope provides practical sug-

gestions on the value, design and implementation of group sequential design. While the

full sample size for such a trial should enable detection of minimally important clinical dif-

ferences in both safety and efficacy outcomes, interim analyses can ensure earlier decision

making when important larger emerging differences in safety or efficacy are observed. An

independent Data Monitoring Committee (DMC) is often used to evaluate any such emerg-

ing differences. Among the responsibilities of a DMC evaluating interim analysis data as

outlined by Ellenberg et al. (2019) the primary ones “are to (i) safeguard the interests of

study patients, (ii) to preserve the integrity and credibility of the trial in order that future

patients may be treated optimally; and (iii) to ensure that definitive and reliable results be

available in a timely way to the medical community.”

We consider several potential advantages of group sequential analysis of data. First,

early futility analysis can be used to rule out important safety issues and/or to require

a positive enough trend to establish proof-of-concept for a new treatment (Ellenberg and

Shaw, 2022). Efficacy interim analysis can more promptly result in approval of highly effi-

cacious treatments to fulfill critical unmet medical needs (e.g., Gandhi et al., 2018; Powles

et al., 2020). Multiple hypothesis testing, while not unique to group sequential design, can

provide large scale data on definitive endpoints for testing multiple arms (doses) or testing

multiple populations (e.g., biomarker positive and overall). Group sequential design is a
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straightforward and well-understood form of adaptive design (Center for Biologics Eval-

uation and Research and Center for Drug Evaluation and Research, 2019). We take the

position that group sequential design can be a quite flexible and effective form of adaptive

design. We also provide some cautions on other forms of adaptive designs due to logistical

considerations and the difficulties of homogeneity assumptions required for many adaptive

design methods to perform as expected.

The software used for this paper is primarily the gsDesign2 R package (Anderson et al.,

2022a). This package allows flexibility beyond its predecessor gsDesign (Anderson, 2020)

which is also used here. The additional features of gsDesign2 include enabling design

with non-proportional hazards assumptions for time-to-event endpoints and the ability

to design based on stratified populations for both binary and time-to-event endpoints.

More flexibility in whether to utilize both upper and lower bounds at each analysis is

also provided. Finally, many alternative testing methods are included in gsDesign2; this

includes design with the weighted logrank approaches of Magirr and Burman (2019), Magirr

(2021), and Fleming and Harrington (2011), as well as the MaxCombo approach to test

with both the logrank test and one or more Fleming-Harrington weighted logrank tests

(Roychoudhury et al., 2021).

The remainder of the paper is divided into sections using past clinical trial experience

to reflect on advantages and challenges of group sequential design. Prior to this we provide

an abbreviated literature review. We conclude the paper with a discussion.

2 Literature Review and Methods

We provide a brief literature review without attempting to be comprehensive. We cite

both frequentist and Bayesian approaches to group sequential design. More comprehensive
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reviews can be found in, for example, Jennison and Turnbull (1999), Proschan et al. (2006),

Wassmer and Brannath (2016), and Emerson et al. (2007). Some readers may wish to skip

or use the this section for reference for the later sections summarizing trial experiences.

2.1 Asymptotic Distribution Theory

Jennison and Turnbull (1999) focus on the canonical form for group sequential design.

That is, there are K analyses with

i) test statistics Z1 . . . , ZK that are multivariate normal,

ii) E(Zk) = θ
√
Ik, k = 1, . . . , K, and

iii) Cov(Zi, Zj) =
√
Ii/Ij, 1 ≤ i ≤ j ≤ K.

The gsDesign2 package uses a more general assumption than ii, namely, E(Zk) =

θk
√
Ik, k = 1, . . . , k in order to accommodate non-proportional hazards. Here, however, we

limit ourselves to ii. The canonical form is useful quite broadly as noted by Scharfstein et al.

(1997): this limiting distribution arises naturally when one uses an efficient test statistic to

test a single parameter in a semiparametric or parametric model. The parameter θ for most

of the examples presented here is the difference in the underlying failure rate for patients

treated with an control regimen and an experimental regimen:

θ = pT − pC . (1)

We assume XT i, i = 1, . . . , nTK are independent Bernoulli random variables with prob-

ability of failure pT that XT i = 1 and XT i = 0, otherwise. Similarly we assume XCi, i =

1, . . . , nCK are independent Bernoulli random variables with probability of failure pC . Now

we assume nT1 < nT2 < . . . < nTK , nC1 < nC2 < . . . < nCK are sample sizes for the

treatment and control groups at analyses 1, 2, . . . , K, respectively. We let
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p̂Tk =

∑nTk

i=1 XT i

nTk
, p̂Ck =

∑nCk

i=1 XCi

nCk
, and θ̂k = p̂Ck − p̂Tk. (2)

The variance of θ̂k = p̂Ck − p̂Tk is

Var(θ̂k) = Var(p̂Ck) + Var(p̂Tk) =
pC(1− pC)

nCk
+
pT (1− pT )

nTk
= I−1

k . (3)

When testing, we use estimates of pC , pT to obtain

Zk = θ̂

√
Î0k. (4)

We have generally

Î−1
k = V̂ar(θ̂k) =

p̂Ck(1− p̂Ck)
nCk

+
p̂Tk(1− p̂Tk)

nTk
. (5)

Under the null hypothesis that pC = pT we let the overall event rate be denoted by

p̂k =

∑nCk

i=1 XCi +
∑nTk

i=1 XT i

nCi + nT i
(6)

and the null hypothesis estimates of statistical information and variance are

Î−1
0k = V̂ar0(θ̂k) =

(
1

nCk
+

1

nTk

)
p̂k(1− p̂k). (7)

We assume IK is the planned statistical information for the final analysis and define the

planned information fraction at analysis k as tk = Ik/IK , k = 1, . . . , K. We also let t0 = 0.

We define B-values (Proschan et al. (2006)) for k = 1, . . . , K as

Bk =
√
tkZk (8)

which behaves like a Brownian motion with drift in that

• B1: B1, . . . , BK have a multivariate normal distribution,
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• B2: E(Bk) = θtk,

• B3: Cov(Bi, Bj) = ti for 1 ≤ i ≤ j ≤ K,

• B4: Bj−Bi is independent of Bi with E(Bj−Bi) = θ(tj− ti), Var(Bj−Bi) = (tj− ti)

for 1 ≤ i ≤ j ≤ K.

B4 is the so-called independent increments property which we use below to simplify

computation of conditional error and conditional power.

2.2 Rejection and Acceptance Regions

Bounds for group sequential designs can be characterized in various ways. For the most

part, these can be considered monotone transformations of scale that have different interpre-

tations. Here we will define bounds for group sequential testing on the B-value and Z-value

scales. Suppose we set a lower and upper B-value bounds −∞ ≤ lk < uk ≤ ∞, 1 ≤ k < K

and −∞ ≤ lK ≤ uK <∞. On the Z-scale this translates ak =
√
tklk, bk =

√
tkuk, 1 ≤ k ≤

K. We assume that at least one of lk, uk is finite for each k ≤ K.

Figure 1 shows on the Z-scale how bounds may differ for different types of trials. We

assume a 2-arm trial in all cases; we will refer to the arms as control and experimental

here. 1) A 1-sided design (ak = −∞, 1 ≤ k ≤ K) has only an efficacy bound used to

control Type I error for declaring experimental treatment superior to control assuming no

difference. 2) A 2-sided symmetric design controls Type I error for declaring either control

or experimental treatment superior assuming no difference. 3) A 2-sided asymmetric design

with futility will be used here to mean a trial with a lower bound that controls Type II

error during the course of the trial. A futility bound is generally intended to be used to

stop a trial when efficacy at an interim analysis is insufficient to suggest a positive final

finding. For the example shown, there is no futility analysis at the third interim due to
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Figure 1: Different types of group sequential designs according to type of lower bound used.

the presumption that enrollment will have already proceeded to the final sample size prior

to this interim analysis. We still show a futility bound at the final analysis which may

control Type II error under the alternate hypothesis at a targeted level. 4) A 2-sided

asymmetric with safety bound design will be used here to only stop for the lower bound

if there is evidence to reject the null hypothesis in favor of control at an interim analysis.

This futility bound is designed to control Type I error to stop in favor of control at a more

relaxed level than stopping to declare superiority of experimental treatment. We exclude

a safety evaluation at the third interim (l3 = −∞) for the same reason as the asymmetric

2-sided design. We exclude a safety bound at the final analysis (l4 = −∞) as control of

Type I error of the trial overall is not an objective at that point. Safety bounds may be

particularly useful when there is some suggestion that there may be a delayed effect onset

or a subgroup that has high early risk of events in the experimental group.

7



We define the rejection region for testing the null hypothesisH0 : θ ≤ 0 versusH1 : θ > 0

at analysis k = 1, . . . , K

Rk = {Bk ≥ uk} ∩k−1
j=1 {lj ≤ Bj < uj}. (9)

The region Ak, 1 ≤ k ≤ K will be termed the acceptance region for now, but we have

discussion of different uses for this region above and will further elaborate below.

Ak = {Bk < lk} ∩k−1
j=1 {lj ≤ Bj < uj}. (10)

2.3 Type I Error and Power

Assuming the trial is stopped if a rejection or acceptance region is reached, we compute

the probability of first rejecting the null hypothesis at analysis k = 1, . . . , K as

αk(θ) = Pθ(Rk). (11)

The probability of first accepting the null hypothesis (futility bound), rejecting the null in

favor of control (2-sided symmetric lower bound) or accepting there is a safety issue (safety

bound) at analysis k = 1, . . . , K given a treatment effect θ is

βk(θ) = Pθ(Ak). (12)

We define further the non-binding rejection region preferred by regulators for group sequen-

tial design (Center for Biologics Evaluation and Research and Center for Drug Evaluation

and Research (2019)) ignores any lower bound for Type I error computation:

R+
k = {Bk ≥ uk} ∩k−1

j=1 {Bj < uj}. (13)

Non-binding Type I error analysis k = 1, . . . , K is defined as

α+
0k = Pθ=0(R+

k ). (14)
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Total non-binding Type I error for a set of group sequential tests will be denoted as

α+
0 =

K∑
k=1

α+
0k. (15)

Power, on the other hand, will be defined accounting for the lower Type I error for the

sequence of tests as:

α(θ) =
K∑
k=1

Pθ(Rk) =
K∑
k=1

αk(θ). (16)

For asymmetric designs with lK = uK , the Type II error for a given θ > 0 under the

restriction that lk = uk is

β(θ) =
K∑
k=1

Pθ(Ak) =
K∑
k=1

βk(θ). (17)

When lK < uk, β(θ) this is just the probability that a lower bound is crossed prior to cross-

ing an efficacy bound (e.g., 2-sided symmetric design or asymmetric design with safety

bound). For symmetric 2-sided trials with lk = −uk, 1 ≤ k ≤ K, β(0) is the probabil-

ity of rejecting the null hypothesis in favor of control benefit when there is no underlying

treatment difference. Computations for Type I error, power and Type II error are all

based on multiple integration; Jennison and Turnbull (1999), Chapter 19 provides these

calculations which have been implemented in the gsDesign R package and generalized

for non-proportional hazards in the gsDesign2 R package. These computations include

computation of boundary crossing probabilities as well as deriving bounds that have tar-

geted boundary crossing probabilities. We will use the convention in the rest of this paper

that if an asymmetric lower bound is derived to control boundary crossing probabilities

under the null hypothesis (βk(0), k = 1, 2, . . . , K) we will refer to the lower bound as a

safety bound as we are trying to rule out worse outcomes in the experimental group than

in control. Alternatively, if we are setting lower boundaries based Type II error under

the alternative hypothesis θ = θ1 > 0 (βk(θ1)), we will refer to the bound as a futility
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bound as crossing such a bound has low probability under the meaningful treatment ef-

fect θ1. For 2-sided symmetric designs, 2-sided Type I error for analysis k is computed as

αk(0) + βk(0) = 2× αk(0), 1 ≤ k ≤ K.

2.4 Bound Computation

There are several ways to compute bounds lk, uk, k = 1, . . . , K that can control Type I

error at a targeted level. We provide an abbreviated summary here compared to Emerson

et al. (2007).

• Haybittle (1971) and Peto et al. (1976) proposed symmetric, 2-sided interim Z-bounds

ak = −bk = 3 which yields a 2-sided probability of crossing at a given interim analysis

at 0.0027 = 2 × 0.00135. With for equally-spaced analyses and a final bound at a

nominal 2-sided test at the 0.05 level, total Type I error is 0.0525, higher than the

targeted 0.05. Changing the final bound to a 2-sided p=0.0474 bound controls Type

I error at the targeted 0.05, 2-sided. This latter adjustment can be generalized and

is referred to as a modified Haybittle-Peto bound.

• Slud and Wei (1982) also proposed 2-sided symmetric bounds, but chose arbitrary

αk(0) = βk(0), k = 1, . . . , K such that 2-sided α =
∑K

k=1(αk(0) + βk(0)). It is

straightforward using standard numerical integration tools to generate asymmetric

bounds not requiring αk(0) = βk(0), k = 1, . . . , K.

• Wang and Tsiatis (1987) proposed boundary families where lk = uk and

√
tkuk = Γ(α,K,∆)k∆ (18)

where Γ(α,K,∆) is an appropriately defined constant to control Type I error. These

bounds included both the classic aggressive Pocock (1977) bounds (∆ = 0.5; u1

√
t1 =
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u2

√
t2 = . . . = uK

√
tK ; note tK = 1) and conservative O’Brien and Fleming (1979)

bounds (∆ = 0 with uk constant in k; on the Z-statistic scale, bounds are decreasing

in k). While this was proposed for symmetric bounds with equally-spaced analyses,

1-sided and/or unequally-spaced analyses can be derived with this approach.

• Pampallona and Tsiatis (1994) generalized the Wang-Tsiatis bounds by setting upper

bounds as above to control one-sided Type I error, but setting futility bounds to

control lower boundary crossing probabilities for some θ1 > 0 at level 0 < β < 1− α

using
√
tklk = kθ1 − Γ2(α, β,K,∆)k∆. (19)

• Lan and DeMets (1983) proposed bounds based on specifying αk(0) = βk(0) = α∗(tk)

for an increasing function α∗(t), t ≥ 0 with α∗(0) = 0, and for t ≥ 1, α∗(t) = α, the

2-sided Type I error targeted. This allows a wide variety of boundary types. These

can also be used as 1-sided efficacy bounds with no futility stopping. Lan and DeMets

(1983) propose the spending functions to approximate O’Brien and Fleming (1979)

bounds where for 0 < t ≤ 1

α∗(tk) = 2− 2Φ(Zα/2/
√
t) (20)

where Φ() is the standard normal cumulative distribution function as well as Pocock

(1977) bounds where

α∗(tk) = min(α log[1 + (e− 1)t], α). (21)

The O’Brien-Fleming-like spending function in (20) is often preferred by regulators

to require stringent efficacy bounds for early stopping in Phase III trials planned for

approval of a new treatment. As noted below in our discussion of Bayesian boundaries,

bounds based on Pocock-like spending can be useful for early-stage trials to make
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prompt development decisions when there is little prior information on treatment

effect. Anderson and Clark (2010) summarize a variety of spending functions and

suggest fit-for-purpose spending as will be described in an example below. These

include the power spending function of Kim and DeMets (1987), another commonly

used flexible spending family by Hwang et al. (1990); more recently Xi and Gallo

(2019) suggested a spending approach related to conditional error.

• Pampallona et al. (2001) introduced β-spending functions β∗(t) that increase from 0

when t = 0 to β (Type II error) or 1 − power under some alternative θ = θ1 > 0.

These futility bounds are generally set up so that lK = uK and for 1 ≤ k ≤ K,−∞ <

lk < uk < ∞. In this case, for k = 1, . . . , K we let βk(θ1) = β∗(tk) − β∗(tk−1) to

back-calculate bounds that have controlled Type II error increments at each analysis.

Choice of sample size is made to ensure lK = uK and β(θ) is the Type II error.

• Asymmetric 2-sided bounds based on βk(0), k = 1, . . . , K can be computed. This

could emphasize early stopping if there is a trend in favor of control that is not as

strong as might be required to stop early for an experimental treatment benefit. We

will refer to such a bound here as a safety bound.

• While many of the above methods were originally developed for 2-sided testing, our

experience with industry trials have been that the testing is one-sided by nature.

Decision-making is asymmetric depending on whether a control or experimental treat-

ment is favored. Thus, we tend to think in terms of one-sided testing. It is good to

specify 1- vs. 2-sided testing up front.

• Finally, there are wedge bounds for early stopping for equivalence or failure to stop

for equivalence; see, e.g., Jennison and Turnbull (1999) or Emerson et al. (2007) for

further information as we will not discuss this approach further here.
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In general, bounds based on spending functions are convenient as they adapt bounds to

control operating characteristics when statistical information is not as planned at the time

of analyses.

2.5 Conditional Error and Conditional Power

Conditional power and conditional error are defined by conditioning on a fixed θ-value and

fixed interim test statistic:

CPk(b, θ) = Pθ

(
K⋃

j=k+1

{Rj}

∣∣∣∣∣ Bk = b

)

= Pθ

(
K⋃

j=k+1

{Bj ≥ uj} ∩j−1
i=1 {li ≤ Bi < ui}

∣∣∣∣∣ Bk = b

)

= Pθ

(
K⋃

j=k+1

{Bj −Bk ≥ uj − b} ∩j−1
i=k {li − b ≤ Bi −Bk < ui − b}

)
.

(22)

The transition from line 2 to line 3 of (22) is based on the memoryless property B4 of

section 2. While conditional power power has typically been computed at θ = θ̂, Liu and

Chi (2001) suggested using θ = θ1, the θ-value for which a design is powered. Conditional

error based on non-binding futility can be defined as

CP+
k (b, 0) = P0

(
K⋃

j=k+1

{R+
j }

∣∣∣∣∣ Bk = b

)

= P0

(
K⋃

j=k+1

{Bj −Bk ≥ uj − b} ∩j−1
i=k {Bi −Bk < ui − b}

)
.

(23)

These forms of conditional power and conditional error use the same numerical integration

forms as for power, Type I error and Type II error computations above. Conditional error

is particularly useful for adaptive design as has been noted by Müller and Schäfer (2001);

this will not be further discussed here.
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2.6 Bayesian Analyses

Two approaches to Bayesian analysis have been suggested. In either case, a prior distribu-

tion for a single parameter such as θ or individual distribution parameters such as pT , pC

above could be considered. For the latter, we refer the reader to Gerber and Gsponer (2016)

who provide useful examples and software (the gsbDesign R package). Here, we consider

a prior distribution for θ and will stick with the asymptotic formulation (canonical form)

for tests described above. While the gsDesign package enables arbitrary prior distribu-

tions, we consider a conjugate normal prior as suggested in, for example, Freedman and

Spiegelhalter (1989) in their comparison of frequentist and Bayesian bounds. We assume

a prior distribution for θ:

θ ∼ Normal
(
µ0, σ

2)
)
. (24)

With an observed efficient estimate θ̂k at analysis k with statistical information Ik, the

posterior distribution for θ is

θ ∼ Normal

(
µ0/σ

2 + θ̂kIk
1/σ2 + Ik

,
(
1/σ2 + Ik

)−1

)
. (25)

That is, the posterior distribution weights the prior and observed means by their respec-

tive statistical information (inverse variance). Freedman and Spiegelhalter (1989) use the

assumption that for some σ0, n0, σ2 = σ2
0/n0 and for k = 1, . . . , K, I−1

k = σ2
0/nk. The

posterior distribution in (25) becomes

θ ∼ Normal

(
µ0n0 + θ̂knk
n0 + nk

,
σ2

0

n0 + nk

)
. (26)

We now set posterior bounds for efficacy at

Pposterior(θ > θE) = εe (27)
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and to stop for futility if

Pposterior(θ < θf ) = εf . (28)

Freedman and Spiegelhalter (1989) note further that for a weak prior (n0 small and θ0 = 0),

these bounds are comparable to the aggressive early stopping Pocock (1977) bounds, while

for a strong prior (n0 large and θ0 = 0), the bounds are comparable to O’Brien and Fleming

(1979) which are conservative for early stopping.

Another approach to analysis is to compute posterior predictive power. This measure

averages conditional power over the posterior distribution for treatment effect given an

interim result. Evaluating this for observed outcomes can be a useful alternative to con-

ditional power. This can also be used to describe bounds lk, uk, k < K. The posterior

predictive power based on an observed test statistic Zk and corresponding interim treat-

ment effect estimate θ̂k is computed as

ppredictive(Zk, θ̂k) =

∫ ∞
−∞

fposterior(θ | θ̂k)CP (Zk | θ)dθ. (29)

3 The EPIC trial

The EPIC Investigators (1994) studied participants undergoing percutaneous transluminal

coronary artery angioplasty (PTCA) at high risk for recurrent events. This double-blind

study was designed to determine the safety and efficacy of abciximab or placebo in this

indication when added to standard therapy with aspirin and heparin. The adjudicated

composite primary endpoint was a binary outcome that included the components 1) death,

2) nonfatal myocardial infarction, and 3) urgent repeat intervention (PTCA or coronary

bypass surgery). Potential safety concerns at the time of study design were major bleeding,

including a relatively rare but severe event, intracranial hemorrhage. The EPIC design
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included 3 treatment arms:

• Abciximab bolus and infusion: Abciximab intravenous bolus and intravenous infusion

• Abciximab bolus: Abciximab intravenous bolus and intravenous placebo infusion

• Placebo: placebo intravenous bolus and placebo intravenous infusion

The trial employed a group sequential design with planned enrollment of 2100 partici-

pants. This was powered to detect a reduction from 15% to 10% in the primary endpoint

with 80% power and 2-sided α = 0.05. Interim analyses were planned after 1/3 and 2/3 of

participants were enrolled.

The final analysis bound required a nominal 2-sided p ≤ 0.036. While the actual spending

function was not published, this could be achieved using a Hwang-Shih-DeCani spending

function with γ = −4.9. Multiplicity control for comparison of two experimental arms ver-

sus a common control was achieved by using a global null hypothesis trend test where the

control was coded as 0, abciximab bolus group as 1, and the abciximab bolus and infusion

as 2. The Mantel-Haenszel trend test (Mantel (1963)) used for this purpose gives little

statistical leverage to the bolus only group and is, thus, similar to a pairwise comparison of

abciximab bolus and infusion versus placebo. In any case, after a positive trend test, the

pairwise comparison of each abciximab group versus control could be tested at the same

α-level. This is a simple example of multiplicity control when testing multiple hypotheses;

for a review of some related literature, see Anderson et al. (2022b).

Adjudication was considered necessary for accurate assessment of the primary endpoint

in this trial. Prior to sending data to the central adjudication group, substantial data

collection, cleaning and transfer were required. Set up of adjudication logistics and per-

sonnel can be a challenge and may be too slow for prompt availability for Data Monitoring

Committee review at the time of interim analyses. On the other hand, the key component
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that eventually demonstrated the underlying primary endpoint benefit was the diagnosis

of myocardial infarction; central adjudication for this endpoint component was particularly

important. For the EPIC trial, the balance of safety and efficacy during the course of the

trial was important. This is indicated by the eventual final summary of major bleeding

versus efficacy results as summarized in the following table. These results were carefully

examined and balanced versus efficacy at the time of interim analyses by the DMC to con-

firm the rationale to continue the trial. The final results yielded a positive efficacy finding

with discouraging safety that may have limited the use of this innovative treatment. The

p-values of 0.009 for the trend test, 0.008 for bolus and infusion vs control (35% reduction)

yielded a positive efficacy finding. The third arm (bolus) which had been strongly sug-

gested by regulators before the trial start was essential to find the minimally effective dose

in the context of safety issues observed. Without this third arm, the question of whether

a bolus only approach could have been safer and equally efficacious would not have been

answered, possibly resulting in no regulatory approval until this question was studied.

EPIC lessons learned included 1) the importance of logistics and execution for interim

analyses, 2) interim analyses are important for both efficacy and safety, and 3) more than

1 experimental arm can be essential in Phase 3 to find an appropriate balance between

efficacy and safety.

Table 1: EPIC results at final analysis.

Endpoint Placebo Abciximab bolus

Abciximab bolus and

infusion

N 696 695 708

Primary efficacy 89 (12.4%) 79 (11.4%) 59 (8.3%)

Major bleeding 46 (6.6%) 76 (10.9%) 99 (13.9%)
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Endpoint Placebo Abciximab bolus

Abciximab bolus and

infusion

Intracranial hemorrhage 2 (0.3%) 1 (0.1%) 3 (0.4%)

4 EPILOG

The positive results of the EPIC trial enabled development of a safer and more effica-

cious dosing strategy as well as evaluating a broader, lower-risk population by the EPI-

LOG Investigators (1997). The dose groups studied were 1) placebo and standard-dose

weight-adjusted heparin; 2) abciximab and standard-dose weight-adjusted heparin; or 3)

abciximab and low-dose weight-adjusted heparin. The primary endpoint of the trial was

the same 30-day endpoint as in the EPIC trial. Type I error was controlled for testing

of this endpoint and a 6-month composite endpoint of death, myocardial infarction, coro-

nary bypass surgery or repeated percutaneous revascularization (urgent or nonurgent). For

each of these endpoints, multiplicity was controlled by first testing for differences in the

combined abciximab treatment groups versus placebo. If this test were positive, testing of

individual abciximab treatment groups versus the placebo treatment group would proceed.

Each of these tests was controlled by group sequential testing, anticipating the later multi-

plicity control work of Maurer and Bretz (2013). At the time of publication, the EPILOG

Investigators (1997) used simulation to evaluate Type I error control.

The EPILOG trial provides a good example of sample size adaptation with group se-

quential design as well as a specific safety bound for lack of efficacy and the importance

of study logistics. Enrollment began on February 27, 1995 and the trial was terminated

on December 14, 1995 after an interim analysis of the first 1500 participants. The study
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revealed both a lower control event rate and a more substantial reduction in the primary

endpoint (30-day endpoint rates: 8.2% in the control group compared to 3.6% and 2.6% in

the two experimental arms).

By the time the trial was stopped following the interim analysis, a total of 2792 partic-

ipants were enrolled. It is not uncommon that a protocol can have this type of accelerated

enrollment and substantial over-enrollment beyond participants with cleaned data for an

interim efficacy analysis. Understanding enrollment rates, follow-up requirements, data

collection, data cleaning, adjudication and their relation to being able to review data in

a timely fashion can be critical. If there is substantial over-enrollment between the data

cutoff and analysis, any summary of later available data not included in the formal analysis

should be discussed with the DMC prior to the unblinded review. Not noted in the publi-

cation was a study amendment based on blinded data review to substantially increase the

final sample size to 4800. The blinded review of study endpoints revealed a substantially

lower rate than in the previous EPIC trial that was in a higher-risk population. The group

sequential design included an unbalanced bound at the first interim analysis of where a

positive efficacy finding required a p-value ≤ 0.0005 if an abciximab group had a lower

event rate than control, while a p-value of ≤ 0.025 in favor of control (safety bound) would

stop the trial for an unfavorable finding.

The adaptations in EPILOG were an effective combination of information-based sample

size adaptation based on blinded review of event rates, group sequential stopping rules for

efficacy and multiple hypothesis testing. Blinded sample size adaptation can be substan-

tially simpler and will generally receive less regulatory scrutiny than unblinded efficacy

adaptation. An unblinded efficacy adaptation (e.g., Chen et al., 2004) would likely have

resulted in the same positive efficacy finding without the substantial sample size increase
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generated by the blinded method. The interim analysis following the blinded adaptation

also effectively limited the sample size when a strongly positive interim result was observed.

The blinded sample size re-estimation used was transparent and could be used simply by

the sponsor and investigators in a non-controversial way (Center for Biologics Evaluation

and Research and Center for Drug Evaluation and Research, 2019). The positive interim

results from this trial and the CAPTURE trial that read out at essentially the same time

were a critical boost for the sponsor at that time.

EPILOG lessons learned included:

• Blinded sample size re-estimation in combination with group sequential design can

be an effective combination to right-size a trial and come to a definitive evaluation

early with strong positive results or late if the sample size adaptation is needed to

ensure adequate events.

• While an early analysis had not shown differences in the previous EPIC trial, im-

provements in treatment regimens appears to have made enough difference to enable

a definitive early analysis in the EPILOG trial.

• Multiple experimental arms were useful to best evaluate the risk-benefit of alternative

heparin regimens.

5 CAPTURE

The CAPTURE Investigators et al. (1997) studied participants with refractory unstable

angina undergoing PTCA who were at high risk for recurrent events. Treatment included

medical therapy starting 18–24 hours prior to planned PTCA through 1 hour post PTCA.

The adjudicated primary 30-day efficacy endpoint was similar to the EPIC trial primary

endpoint above. The CAPTURE design was a double-blind randomized comparison of
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abciximab bolus and abciximab infusion (experimental) versus placebo bolus and placebo

infusion (control). Proof of concept for safety and efficacy of the experimental treatment

was demonstrated in randomized 60 patient Phase 2 study (Simoons et al., 1994). A group

sequential design with 1400 participants was planned in CAPTURE to detect a reduction in

the primary endpoint from 15% to 10% with 80% power and 2-sided α = 0.05; we use one-

sided testing here and convert study bounds appropriately. A time-to-event analysis using

the logrank test was specified; this had little impact on sample size and power compared to

a binary outcome in this case with a 30-day outcome and complete follow-up on essentially

all participants. Interim analyses were planned after 25% (N=350) and 50% (N=700) of

the 1400 planned participants were enrolled.

The group sequential design used a custom spending function to generate fit-for-purpose

bounds as later outlined in Anderson and Clark (2010). This was inspired by discussion

with Jan Tijssen, the DMC statistician from Amsterdam UMC. We present results here

with one-sided testing as opposed to two-sided reporting by the CAPTURE Investigators

et al. (1997). The spending function resulted in 1-sided bounds with p = 0.00005, p =

0.0005 nominal p-value bounds at 25% and 50% of participants to ensure that statistically

significant differences would reflect clinically important differences that could justify a

change in clinical practice. Following the second interim analysis, the DMC suggested an

additional analysis after data from 75% of participants was available; the custom spending

function gave a nominal 1-sided p-value of 0.0036; while the actual spending function was

not published with the paper, these bounds are equivalent to a t-distribution spending

function (Anderson and Clark, 2010) with cumulative spending of 0.00005, 0.000535, and

0.0038 at the 3 analyses; this can be implemented using Anderson (2020) or more simply

with the Shiny interface at https://rinpharma.shinyapps.io/gsdesign/. While having
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an unblinded body recommend an additional analysis can inflate Type I error slightly even

with spending functions, this is not generally a big issue with a smooth spending function

(Proschan et al., 1992, Lan and DeMets (1989)). The addition of an interim analysis was

discussed with regulators prior to implementing. Another fact that reduced any concerns

about an observed p-value of 0.0032 1-sided at the N=1050 analysis, which is relatively

close to the bound nominal p-value of 0.0036, was a strongly positive result in the related

EPILOG trial shortly before this DMC review. As seen in Table 2, the interim bounds

at analyses 2 and 3 are more conservative than the typical O’Brien-Fleming-like spending

(Lan and DeMets, 1983); the corresponding comparison of spending functions is in Figure

2A. The chosen spending approach is consistent with requiring stringent interim results

prior to stopping a trial at an interim analysis. The approach also enabled a less stringent

result for a positive finding at the final analysis by spending less at interim analyses 2 and

3.

Table 2: CAPTURE bounds versus traditional O’Brien-Fleming-like spending bounds;

nominal 1-sided p-values.

Spending Interim 1 Interim 2 Interim 3 Final analysis

(N=350) (N=700) (N=1050) (N=1400)

Custom spending 0.000050 0.0005 0.0036 0.0244

O’Brien-Fleming 0.000007 0.0015 0.0092 0.0220

Figure 2B shows several things on a B-value scale. At an analysis proportion ti into

the trial relative to the final planned sample size, the B-value is defined as
√
tiZi where Zi

is a standardized normal test. In this case
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Figure 2: Panel A shows a comparison of O’Brien-Fleming-like spending functions and the

custom spending function. Panel B shows the CAPTURE trial results and design sample

space ordering.

Zi =
p̄Ci − p̄Ei√

V̂ar(p̄Ci − p̄Ei)
. (30)

That is, Zi is the difference in observed event rates at analysis i divided by its estimated

standard error. B-value scaling (Proschan et al., 2006) implies the expected value of each

B-value is proportional to the number of observations as indicated by the diagonal line in

the plot. The observed B-values are shown with circular points through the third analysis

when the trial was stopped after crossing the interim efficacy bound. While the third

interim and final results were based on the CAPTURE Investigators et al. (1997), the first

two values were based on a binomial analysis of counts published in Cytel, Inc. (2007).

The slope of the line from the origin to an interim observation represents the standardized

effect size observed. Extending that line forward shows you what future predicted B-values

would be under the same trend. For instance, the steep slope of the observed line from 0
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to N=350 suggests that the trial would be expected to stop when N=700 if the same trend

continued. However, we see the slope from N=350 to N=700 was almost flat, indicating

little treatment effect in the second 350 patients. We see that the observed slope from 0

through the N=700 analysis is almost the same as the expected trend line indicated for

the alternate hypothesis. We see also that extending that line would come very close to

what was observed on the observed line at N=1050. The B-value at N=1050 crossed the

group sequential bound for the trial indicated by the α = 0.025 line. While the differences

over time could just have been random variation, the countries contributing substantially

to enrollment over time did change. While this possible lack of homogeneity in the patient

population does not substantially impact a group sequential trial, it could have unfortunate

implications for an adaptive trial design that depends heavily on homogeneity.

The α = 0.025, 0.1, 0.2 and 0.5 lines in Figure 2B indicate that the entire set of outcomes

can be ordered by group sequential bounds for different α-levels. This ordering uses the

same spending function and timing of analyses with different α-levels to order the sample

space. This ordering can be used to compute repeated p-values (Jennison and Turnbull,

1999) by selecting the smallest α-level at which a test rejects the null hypothesis; these

can be considered multiplicity adjusted p-values. The minimum of repeated p-values up

to and including an analysis is referred to as a sequential p-value by Liu and Anderson

(2008), another form of adjusted p-value having the advantage that it cannot increase over

time. Corresponding to repeated p-values are repeated confidence intervals (CI). Assuming

a test can be performed of any null hypothesis real-valued θ0, the lower repeated confidence

interval is the smallest θ0 value for which we can reject θ0 in favor of a larger value. The

convention used here, even for asymmetric testing, is to invert the test in the opposite

direction at the same level. As noted by Jennison and Turnbull (1999), this results in a
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simultaneous coverage guarantee for all the intervals. Note that even after a bound has

been crossed, if the original design is followed subsequent repeated p-values and confidence

intervals maintain the above interpretability.

The result of the CAPTURE trial at N=1050 barely crossed the group sequential bound.

Had the trial continued, the repeated and/or sequential p-values for the further planned

analyses could still be legitimately interpreted as adjusted p-values.

We note that the DMC and sponsor agreed to stop enrolling in the trial at the time

of a positive finding. This resulted in a total of 1266 patients reported in the primary

publication, less than the final planned 1400 participants. The final 1-sided p-value with

1265 evaluable patients was 0.006. The inverse normal method of Lehmacher and Wassmer

(1999) or a conditional error method such as Proschan and Hunsberger (1995) could be

used to update bounds after such an adaptation is made when unblinded results are known.

While the analysis for CAPTURE used the logrank test, only participants with complete

30-day data were included at each analysis. Thus, the independent increments related to

participant groups added at each analysis held, enabling the standard asymptotic approach.

A recent example in COVID-19 treatment with changes in treatment group differences early

and late in the trial was Jayk Bernal et al. (2022).

We further characterize the results at interims 1–3 in the Table 3. Conditional power is

evaluated using the interim treatment effect (CP thetahat) as well as the treatment effect

for which the design was powered (CP theta1). Conditional error is the same calculation

assuming θ = 0. The strong and weak prior distributions used for Bayesian calculations

are similar in nature to those suggested by Freedman and Spiegelhalter (1989). These work

with the asymptotic distribution for the risk difference. Both prior means center on 0 risk

difference, meaning that Bayesian analyses will shrink towards no difference compared to
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frequentist analyses. The strong and weak prior information are equivalent to about 10%

and 1% of the information from the actual observations. The early very positive results

are stronger than later in the trial. This reinforces the potential value of requiring very

extreme results for an early stop for efficacy. The Bayesian analyses shrink early results

towards no difference, suggesting the potential value of the predictive power evaluations

and posterior mean differences shown in order to de-emphasize large early differences at

the time of interim decision making. By the third interim when the trial was stopped,

different evaluations of conditional and predictive power are similar as are the alternative

effect size estimates. We note that the repeated confidence interval at interim 3 crosses

0, making it inconsistent with the statistically significant repeated p-value shown. This is

because original data were not available to compute repeated confidence intervals with a

Cox model consistent with the logrank test used for the final analysis. All other testing and

confidence intervals in the table are based on the methods for unstratified risk difference

of Miettinen and Nurminen (1985).

Table 3: CAPTURE evaluation at interim analyses.

Interim analysis

Measure 1 2 3

Sample size 350 700 1050

Control: Events/N 30/175 55/353 87/532

Control: Rate 17.1% 15.6% 16.4%

Treatment: Events/N 14/175 37/347 56/518

Treatment: Rate 8% 10.7% 10.8%

Rate difference 9.1% 4.9% 5.5%
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Repeated CI (-5.1%, 24%) (-3.6%, 13.6%) (-0.1%, 11.3%)

Z test statistic 2.58 1.93 2.73

Z-bound 3.89 3.29 2.69

p-value (1-sided, nominal) 0.005 0.027 0.003

Repeated p-value NS NS 0.022

CP (thetahat) 100% 85.8% 99.1%

CP (theta1) 95.4% 87.5% 98.6%

Conditional error 22.8% 19.9% 78.3%

Predictive power (strong prior) 83.7% 64.1% 96.2%

Predictive power (weak prior) 95.7% 76.1% 97.8%

Posterior mean (weak prior) 8.8% 4.8% 5.5%

95% prediction interval (weak prior) (2%,15.6%) (-0.1%,9.8%) (1.3%,9.6%)

Posterior mean (strong prior) 6.5% 4.1% 4.8%

95% prediction interval (strong prior) (0.6%,12.4%) (-0.5%,8.6%) (1%,8.7%)

CAPTURE lessons learned included:

• Enrolling in different sites over time can make trial non-homogeneous. While this is

not a huge issue for group sequential trials, it could be problematic for trials with

adaptive designs depending on interim trends.

• While O’Brien-Fleming-like spending is a good default, it may be worth considering

a bespoke (custom) spending function.

• Using B-values and adjusted p-values on plots can be useful interim analysis tools.

• Bayesian analyses as well as conditional power based on different effect sizes can

add useful perspective at the time of interim analysis to de-emphasize early extreme
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differences.

6 Example testing many hypotheses

Graphical multiplicity control in group sequential design (Maurer and Bretz, 2013) is a pow-

erful and flexible approach to evaluate multiple hypotheses in a group sequential design. An

overview of graphical testing such as Bretz et al. (2011) may be useful for those not familiar

with it. It is generally a simple way to communicate testing of multiple hypotheses and

associated Type I error reallocation strategies. This was successfully taken to an extreme

in the KEYNOTE-048 trial (Burtness et al., 2019) where 14 hypotheses were tested. The

trial included 882 participants with untreated locally incurable recurrent or metastatic head

and neck squamous cell carcinoma (HNSCC). Control treatment included cetuximab with

chemotherapy. There were 2 experimental treatment groups: pembrolizumab monotherapy

and pembrolizumab with chemotherapy. There were two primary outcomes: overall sur-

vival (OS) and progression free survival (PFS). Finally, there were 3 populations of interest

based on combined positive score (CPS) for PD-L1 biomarker status at baseline: CPS ≥ 20,

CPS ≥ 1, and the total population. This led to 12 superiority hypotheses for experimental

treatment versus control: 2 endpoints × 2 experimental regimens × 3 populations. In addi-

tion, there were non-inferiority hypotheses in the overall population for overall survival for

each of the experimental arms versus control, bringing the total hypotheses tested to 14.

The graphical multiplicity plan is illustrated in Figure 3. Most Type I error was initially

allocated to selected OS hypotheses. Less was allocated to PFS where more events were

expected. The arrows in the figure indicate proportions of α-to be reallocated from rejected

hypotheses to not yet rejected hypotheses; Bretz et al. (2011) provide a useful introduction

to the Type I error reallocation algorithm. Adding to the complexities of this testing were
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Figure 3: KEYNOTE-048 multiplicity strategy, based on Burtness et al. (2019).

multiplicity issues created by the two interim analyses planned.

6.1 Study results

Before going into details useful for study planning and execution, we note the study out-

comes from Burtness et al. (2019) that demonstrate the value of the complex approach

targeting multiple hypotheses. There were no statistically significant findings for the PFS

endpoint for either experimental treatment compared to control in any of the pre-specified

populations. However, overall survival for each experimental group was improved compared

to control in both the CPS20 and CPS1 populations. For overall survival in the overall

population the pembrolizumab + chemotherapy combination showed superior results and

the pembrolizumab monotherapy group non-inferior results compared to control. At study

start, it was not clear which of these hypotheses would likely be rejected; the α-splitting
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provided an opportunity to hedge bets for the study investment.

The α-splitting had the cost of more stringent bounds, but the benefit being if there were

differential treatment effects by population, there could be a much better chance to find a

positive result. The ability to define a benefiting population through multiple hypothesis

testing in a single Phase 3 trial can be quite helpful to payers and prescribing physicians.

Trying to find all these answers in a shorter, smaller Phase 2 trial can be a huge chal-

lenge. Adaptive designs possibly dropping some populations and reallocating α could have

been problematic as the surrogates may have precluded the positive findings observed for

pembrolizumab monotherapy.

6.2 Avoiding amendments

Burtness et al. (2019) was accompanied by supplementary materials that included the

original and amendment 10 protocols. The final protocol indicated that some of the changes

were related to challenges related to ensuring adequate event counts and follow-up duration

for adequate evaluation of all study objectives. Without going through these changes in

detail, we suggest the following general considerations that may be helpful in trials of this

nature to reduce the need for protocol amendments. For any protocol, including this one,

other considerations may drive specifications.

Changes to protocol hypotheses, if any, should be made early in the trial and prior

to any unblinded analysis. When evaluating many hypotheses, it is extremely unlikely

event targets for different hypotheses will be realized simultaneously. This suggests that

the common practice of having all analysis timing be event-based is problematic in this

type of trial. Differences in enrollment rates, subpopulation prevalence, control group

event rates and treatment effects all interact to drive event accumulation for time-to-event
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hypotheses. A potential solution may be to focus on one population that is most important

to get adequate data for. The sample size might focus on this population, suggesting that

other populations will be studied with whatever sample size is available when the targeted

population sample size is achieved. To illustrate this, we provide a simplified example that

was not used for the actual protocol. For KEYNOTE-048, the original protocol suggested

N=750 for the overall population and it was stated that the protocol may be amended if

prevalence suggested fewer than 100 participants per arm would be enrolled in the CPS20

population (N=300 total). To avoid amendment, the protocol might be written to enroll

300 participants who were in the CPS20 population as well as up to 900 overall. The first

two interim analyses were focused on PFS efficacy analysis. The second of these was the

final planned analysis of PFS. Thus it may be useful to require both a minimum follow-up

for the final participant enrolled as well as a PFS event target before the final cutoff for the

analysis. This event target could be based on the CPS20 population with other populations

and event counts being larger. Alternatively, timing could be based on a calendar duration

of minimum follow-up since, in this metastatic indication, the disease recurrence rates in

the control group were known to be very high. For instance, interim analyses could be

planned with 6 and 12 months minimum follow-up regardless of events accrued. The final

analysis was planned for OS only. Requiring a minimum follow-up (e.g, 2 years) could

be useful to define the tail of the distribution for each population. Final analysis could

require a targeted number of events for each population or simply cutoff at the targeted

final follow-up duration. While a simple calendar cutoff could limit power if treatment

effects are less than anticipated, it would ensure an appropriate assessment of tail behavior

and complete the trial in a time frame that is relevant given the fast pace of changing

practice standards for many cancers. The above considerations should provide adequate
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follow-up and reduce the need for amendments in this type of complex scenario.

Common spending function approaches (Maurer and Bretz, 2013) need some modifica-

tion to incorporate the time-based analysis timing strategy above. Setting an incremental

proportion of allocated α at each interim analysis (e.g., 1/25th) would work to appropri-

ately order bounds as suggested by Liu and Anderson (2008). The final analysis then

spends any remaining α; this is basically the modified Haybittle-Peto method suggested in

Section 2.

Burtness et al. (2019) used the convention that the first analysis at which a boundary

is crossed is the definitive analysis for a given hypothesis, treating subsequent analyses of

the same hypotheses as supportive. This convention computes a study p-value for each

hypothesis at the analysis where the result is first positive or, if never positive, at the final

analysis performed. We will refer to this as the first boundary crossed convention. Thus,

the study reports that at the second interim analysis H7, H8 and H9 were rejected, demon-

strating improved survival for pembrolizumab alone versus control in the CPS20 or and

CPS1 populations as well as non-inferior survival for the overall population. Also at the

second interim analysis H13 and H14 were rejected demonstrating that overall survival was

not only non-inferior but superior in the pembrolizumab + chemotherapy arm compared

to control; at the final analysis H11 and H12 were rejected to definitively establish that

pembrolizumab + chemotherapy was superior to control in the CPS20 and CPS1 popula-

tions. The p-values for these hypotheses at later analyses were reported, but not considered

primary. The first boundary crossed convention used for this trial is not necessary since

boundaries were chosen based on Maurer and Bretz (2013) which controls adjusted Type

I error for all analyses performed per the trial design. That is, repeated p-values could be

computed and reported as statistically significant due to the sample space ordering used to
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specifically enable reporting of repeated p-values or sequential p-values (Liu and Anderson,

2008) as discussed above with the CAPTURE study. The importance of this can be to add

more definitive, longer-term evidence as equally and more important than evidence at the

first time a boundary is crossed. In the case of Burtness et al. (2019), this could have meant

greater emphasis in the primary manuscript on late treatment differences, given that more

than 2 years of minimum follow-up was available by that time.

Other challenges are created by the approach here with multiple populations, dose

groups, endpoints and interim analyses. First, it can be hard to predict subgroup preva-

lence. Second, both control and experimental event rates may vary between populations

studied. For example, if prevalence of a subgroup were 40% instead of an assumption

of 60%, accrual of planned events may be difficult or impossible in the subgroup. The

group sequential design convention analyzing when a pre-defined fraction of final events

is observed is essentially impossible when planned fractions will generally be realized at

different calendar times for different hypotheses.

The implementation of Maurer and Bretz (2013) can be onerous; we have supported

this with the R package gMCPLite (Zhu et al., 2022). The use of sequential p-values with

the Maurer and Bretz method largely automated and documented which hypotheses could

be rejected at each analysis. Pre-specifying how to deal with such logistical challenges is an

important protocol consideration to avoid protocol amendments. The correlations between

tests of different hypothesis are worth consideration; see Anderson et al. (2022b) for the

implementation and accounting for correlations to relax bounds.

Lessons learned from the KEYNOTE-048 trial included:

• A large number of hypotheses can be successfully evaluated in a single trial to evaluate

treatment strategy, population and multiple endpoints in a well-controlled fashion.
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• Careful thought is required for timing of analyses as well as details of analysis to

ensure the analysis is carried out in a rigorous way.

• The combination of open source software for design (gsDesign) and multiplicity

(gMCPLite) are key to enabling this type of design.

• While preparation for this type of trial can be complex, underlying concepts of graph-

ical testing and Type I error reallocation are straightforward to communicate with

non-statisticians. The multiplicity strategy involves extensive discussions between

statisticians and non-statisticians.

7 Discussion

We have found group sequential design to be a productive approach to the design of piv-

otal trials over many years. While the common use perhaps began within the National

Heart Institute in the 1970s, group sequential trials have become quite common in the

pharmaceutical industry and cooperative clinical trial groups since. With many standard

textbooks and software, design and implementation can be straightforward. While there

is also substantial software available for adaptive designs, challenges include fully account-

ing for operational challenges such as operational and medical practice changes over time.

Basing changes on surrogate endpoints can also be problematic, as surrogacy assumptions

may not be valid. Basing changes on early endpoints may be a mistake when the treatment

difference between groups changes over time; on the other hand, group sequential design

handles this naturally. There is often a desire to enroll trials quickly; while this can create

challenges for group sequential trials, it can be particularly problematic for adaptive trials.

We have noted that logistics are key for any trials with interim analyses in order to

ensure the best data for decision making. It is important to ensure that there are suffi-
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cient endpoints to do a meaningful analysis at early interims. It may be that the earliest

interim analyses focus on harm rather than benefit, with stringent interim bounds usually

recommended. Ensuring there is some time requirement as opposed to just event or patient

counts between interim analyses can be worthwhile as fast information accrual can some-

times lead to small time gaps between analyses. For multi-population or multi-arm studies,

carefully considering how boundaries will adapt when design assumptions are not met is

important. In some cases with improving medical practice or a different patient population

than expected, it can take a long time to accumulate targeted endpoints for all hypotheses

being tested. In such cases, setting a maximum trial duration may be worthwhile even if

this limits power.

In summary, group sequential design can right size a trial, allow evaluation of the

balance of safety and efficacy over time and provide the best possible answers to difficult

dose, population, and endpoint questions related to best medical practice. Finally, we have

noted that interim bounds for efficacy and futility are worth considerable thought to ensure

appropriate decision-making guidance.
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