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A B S T R A C T

In this study, we have selected the papers in the chemometric field that were published between 2001 and 2015 in
the six journals (Chemometrics and Intelligent Laboratory Systems, Journal of Chemometrics, Analytica Chimica Acta,
Analytical Chemistry, Talanta and Journal of Chromatography A) to investigate the collaboration patterns and
network. We reveal and visualize the collaboration patterns, publication trends, and research hotspots on che-
mometrics based on the datasets. The central chemometricians are then determined under different indexes.
Finally, we discover that the largest component of the network is clustered into the “Big Europe” and “China-
Changsha” community. The rest components in the network are also identified and explained. The results show
the features of the collaboration patterns and network in chemometric research and present a new way to explore
the zeitgeist in the area.
1. Introduction

In the early 1970s, Professor Wold and his team started to employ
kemometri in their seminal work on spline functions [1]. Subsequently, he
presented the term chemometrics, which is equivalent to kemometri, and in
1974, formally defined it as “the art of extracting chemically relevant
information from data produced in chemical experiments” in an analogy
with biometrics and econometrics [2,3]. Meantime, Wold and Kowalski
founded the International Chemometrics Society [3,4]. Since then, che-
mometrics has been rapidly developed and widely applied in chemistry
and chemical engineering. At the same time, this area has drawn the
attention of researchers from different countries worldwide. Therefore, it
deserves our effort to explore the perspective on chemometrics, as well as
further study the evolving collaboration patterns and the fundamental
structure of the collaboration network in chemometrics.

Recently, Newman studied the structure of the scientific collaboration
networks of physicists and computer scientists and presented the differ-
ences in the patterns of collaborations between the fields [5]. In another
paper [6], he analyzed a hybrid coauthorship and citation network of
physicists. Ji [7] applied new community detection methods to the two
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network datasets, namely coauthorship and citation networks, for stat-
isticians. In this paper, we consider the collaboration patterns and
network in chemometric research, including the collaboration trends,
research topics, network centrality, community detection, and so on.

First, we need to choose the suitable and representative journals.
Because chemometrics originated from analytical chemistry and most of
chemometrics methods are applied in analytical chemistry [8], we
choose those journals with the analytical chemistry category in the
Institute for Scientific Information (ISI) system. As to those journals in
other chemistry fields, they are not in our consideration even they also
publish a small number of chemometric papers. Two prominent journals,
Chemometrics and Intelligent Laboratory Systems (ChemoLab) and Journal of
Chemometrics (JChemom), came into being in the late 1980s. They publish
original research, reviews and other types of papers on development of
novel statistical, mathematical, computer techniques in chemistry and
related disciplines. In addition, a part of the papers on other journals of
analytical chemistry, such as Analytical Chemistry (AC), Analytica Chimica
Acta (ACA), Journal of Chromatography A (JCA), Talanta, is related to
chemometric methods and applications. For example, ACA encourages
the submission of manuscripts about all aspects of analytical theory and
ay 2019
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methodology, including chemometric techniques. JCA also provides a
forum for the publication of original research and reviews on all aspects
of separation science, comprising various chemometric methods. All the
papers in ChemoLab and JChemom are chosen. And the chemometric
papers in AC, ACA, JCA and Talanta are picked out. These datasets can
establish a more comprehensive analysis in the chemometric field and
the collaboration network among chemometricians [9].

We have organized this paper into the following sections. In Section 2,
we provide a brief introduction to the network analysis methods. In
Section 3, we illustrate the process of data collection and discuss the
collaboration pattern analysis. We use the composite likelihood-Bayesian
information criterion (CL-BIC) method to detect the significant commu-
nities and explain the components of chemometricians’ collaboration
network in Section 4. Our conclusions with some comments are included
in Section 5, while the data pre-processing information are presented in
the Appendix.

2. Network analysis methods

2.1. Basic features of the network

First, we present some notations. For an undirected network, G ¼
ðV;EÞ stands for the network G with V nodes and E edges. The symmetric
adjacency matrix Ai;j is defined as follows: aði; jÞ ¼ 1 means that node i
and node j are linked, and aði; jÞ ¼ 0 shows that they are not linked. If a
pair of nodes has more than one link, then it is a weighted network;
otherwise, it is an unweighted network. In this paper, we adopt the un-
weighted network.

One of the most concerned questions is to identify the important
vertices in network analysis. Various centrality indexes for collaboration
networks, such as clustering coefficients, shortest paths, betweenness,
funneling, and average distances, have been studied in Newman's foun-
dational work [10–12]. Those indexes are measured from different per-
spectives. For example, the betweenness centrality measures how often a
vertex lies on short paths between other pairs of vertices [13]. The
PageRank score considers not only the number of edges but also the in-
fluence of the linked nodes on certain nodes. And we will describe it in
the next section.

Generally, the node with a larger number of links than the average
number is called the hub node. When the degree of distribution follows a
power law, then this is a scale-free network [12].

2.2. PageRank centrality

Google initially used the PageRank algorithm [14,15] to rank web-
sites in its search engine and then expanded the algorithm to measure the
centrality within a network. First, a state transition matrix k needs to be
defined. As usual, the transition matrix is determined by the degree of
nodes. The computational formula is as follows:

yi ¼ d
X
j2V

1
kj
yj þ ð1� dÞ

N
(1)

The first part of equation (1) sums up all centrality scores of the node j
with a link to node i: The second part is the damping factor, which is the
probability of random transitions between nodes. The default value of
coefficient d in Equation (1) is 0.85 [14].

2.3. Community detection

Community detection is a major field in the network analysis.
Considering a network G ¼ ðV;EÞ, the community detection problem can
be shown as V ¼ V1[ V2[ ⋯VK , where Vi is the set of nodes that rep-
resents a community, and K denotes the number of communities. Besides
chemists and chemical engineers, this research area has attracted a huge
number of researchers from such fields as computer science, physics, and
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statistics. Therefore, various methods of community detection have been
proposed from different perspectives, including modularity optimization
[16], maximum likelihood [17–20], graph partition [21], and spectral
clustering methods [22,23].

As a maximum likelihood method, the degree-corrected block model
(DCBM) was proposed by Karrer and Newman in 2011 [17]. It is an
extension of the stochastic block model [24]. In the DCBM, the adjacency
probability between nodes considers not only a symmetric
community-wise edge probability Pgigj but also the variations in the de-
gree of nodes θi. The equation is defined as follows:

E
�
Ai;j

� ¼ θiθjPgigj (2)

The links on the edges are independent Bernoulli random variables.
Therefore, the formula for the likelihood function with the adjacency
matrix A is as follows:

PðGjθ;ω; gÞ ¼
Y
i<j

θiθjPgigj
Ai;j
�
1� θiθjPgigj

��
1� Ai;j

�Þ (3)

Its log-likelihood form is given as follows:

clð bθc ;AÞ¼ logPðGjθ;ω; gÞ ¼ 2
X
i

θilogwi þ
X
rs

ðmrslogprs � prsÞ (4)

where wi and mrs are defined as follows:

wi ¼ θi
θgi

，mrs ¼
X

r<s
I
�
gi ¼ r; gj ¼ s

�
Here, θgi is the degree sum of group gi. In recent years, the DCBM has

been widely adopted in the new community detection methods [18–20].

2.4. Composite likelihood Bayesian information criterion

In the network analysis, it is a challenging task to determine the
number of communities. Many algorithms assume the number of com-
munities before detection [18–20,25]. Recently, some algorithms have
been proposed to determine the number of communities, for instance, the
cross-validation method by splitting the nodes [26] or edges [27], Mar-
kov Chain Monte Carlo [28,29], hypothesis testing [30,31], spectral
estimation [32], among others.

In this paper, we introduce the CL� BIC [33] to determine the
optimal number of the communities. This criterion combines the block
model likelihood with a penalization of the model complexity and is
formulated as follows:

CL�BICk ¼ �2clð bθc ;AÞ þ d�k log
�
NðN � 1Þ

2

�
(5)

The first part of Equation (5) can be a different log-likelihood model
with the k communities, for example, the stochastic block model [24],
the DCBM [17], or the mixed-membership stochastic block model [34].
In this paper, we choose the log-likelihood form of the DCBM because it is
more suitable for the collaboration network. The second part of Equation
(5) is the penalty term for the model complexity, where d�k ¼
traceðH�1

k VkÞ , Hk ¼ Eθð�r2
θclðθ;AÞÞ and Vk ¼ Varθðrθclðθ;AÞÞ. The

optimal K is determined by the minimal CL� BIC value from a series of k'
candidates.

3. Collaboration pattern analysis

3.1. Data collection

We have collected the metadata of the papers published between
2001 and 2015 in the six journals, including papers' titles, authors, ab-
stracts, keywords, and URLs. However, AC doesn't provide the keyword
information in its webpages. Here, the keyword plus part of AC in the ISI
system [35] is used. The original unfiltered dataset comprised a total of
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62,042 papers and 207,452 authors. Notably, most of the papers pub-
lished in AC, ACA, JCA and Talanta belong to the field of general
analytical chemistry, and only a small part is relevant to chemometrics.
The first step is that we select the related papers according to the sub-
directories in ACA. The second step is that we use the keywords about
chemometric methods to select the papers. We also have found that au-
thors' names may have different variations, such as Y.Z. Liang or Yizeng
Liang and Bernard G.M. Vandeginste or BGM Vandeginste. We use the R
package stringdist, first name and last name to identify the different
variations of authors' names.

After the process of paper selection and name disambiguation, only
3985 papers and 8389 authors have been left in the final dataset. And the
3985 papers include the original research and review papers, but exclude
book reviews and so on. The Appendix presents more detailed informa-
tion about the data pre-processing.

3.2. Publication and coauthor patterns

Fig. 1 shows the number of chemometric papers published each year
between 2001 and 2015. Over the past 15 years, the number of papers
published annually has steadily increased from 192 to 340. However,
some minor fluctuations are observed in certain years, owing to confer-
ences or special events. For example, in 2005, those papers presented at
the 9th International Conference on Chemometrics in Analytical Chem-
istry are published in ACA, but in 2006, it did not publish any special
events or conference papers. As such, the number of its published papers
decreased sharply in 2006.

Fig. 2(a) shows the number of authors contributing chemometric
papers each year, increasing from 515 to 1184 over the past 15 years. The
growing number of the authors has exceeded that of the published pa-
pers, which indicates an increasing competition among chemo-
metricians. In contrast, the average number of the chemometric papers
written by each author between 2001 and 2015 has decreased from 0.37
to 0.28 based on Figs. 1 and 2.

Fig. 2(b) shows the average of each author's partner over the past 15
years. Overall, the average number has continuously risen from 3.5 to
4.6. Therefore, on average, the authors have increasingly collaborated in
conducting chemometric research.

3.3. Imbalance in authors’ contribution

In general, the individual authors’ productivity shows a skewed dis-
tribution and only a few authors have contributed a high number of
Fig. 1. The number of chemometri
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papers. As presented in Fig. 2(a), the papers written by each author range
from 1 to 71. The empirical proportion among all the authors, publishing
more than a given number of papers, is also shown in Fig. 3(a). The
power-law model is often used to fit the distribution, and its formula is as
follows:

pðzÞ � z�γ (6)

where z denotes the number of papers. The estimated power-law expo-
nent γ for our data is 1.832. The R2 value is 0.9975, and the p-value is
smaller than 0.001, which suggests that our dataset fits the power-law
distribution well and can help us infer the proportion of the authors
with different productivity levels. For example, over 50% of the authors
have published only one paper, and nearly 1% have published more than
40 papers.

Similar to the distribution of productivity, the number of coauthors
has also substantially varied. The top five authors who have more col-
laborators are Yu (122), Liang (121), Heyden (120), Bro (111), and
Massart (105). In contrast, as shown in Fig. 3(b), most of the chemo-
metricians in the collaboration network have 10 or fewer coauthors. In
Newman's fundamental research about the scale-free network, the
following modified power-law distribution [36] is used to fit the distri-
bution of the number of coauthors:

pðzÞ � z�γe
�z=zc (7)

For the dataset, the estimated γ is 0.815, and zc is 12.22. The
goodness-of-fit R2 is 0.91, and the p-values of the parameter estimation
are both smaller than 0.001, indicating a good fit for the modified power-
law distribution. We can infer that near 8% authors have more than 10
coauthors and over 40% authors have one coauthor.

Above all, Fig. 3(a) clearly shows that the productivity and the
number of coauthors among the authors have a huge variance. Here, we
define each author's contribution as 1

K when one paper has K coauthors.
Therefore, each author's contribution depends on the number of papers
and coauthors. In economics, the Lorenz curve and Gini coefficient can
measure the gap between the rich and the poor. In this paper, we use
them to investigate the imbalance in the authors' contributions. In Fig. 4,
the x-axis represents the fraction of the authors with the most contribu-
tions, and the y-axis denotes the cumulative fraction of the contributions.
In economics, a 0.4 Gini coefficient is often regarded as the international
warning for a dangerous level of inequality. In Fig. 4, the Gini coefficient
is 0.5171, and the top 20% productive authors dominate 51.7% of the
cs papers published each year.



Fig. 2. (a). The number of authors each year. (b) The number of coauthors per author each year.

Fig. 3. (a). The distribution about the number of papers. (b). The distribution about the number of coauthors.
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Fig. 4. The Lorenz curve.
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total contributions. The reason can be partly attributed to the fact that a
large proportion of the papers is produced by certain large research
groups (or communities). We describe some detected communities in the
following section.

3.4. Word cloud

A word cloud, which resembles different words and put together in
the shape of a cloud, could be used to intuitively visualize the keywords
listed in the selected papers and reveal the hot research topics. The size of
each keyword represents its frequency of occurrence in the datasets. And
different keywords with similar meanings are integrated into the same
words. For example, PLS and partial least squares regression both
represent the PLS algorithm. The frequencies of all keywords in the
datasets are ranked, and the top 60 words are selected to make the word
Fig. 5. Word cloud for the chemometric topics.
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cloud, as shown in Fig. 5. It illustrates several hot topics, including
multivariate calibration, PARAFAC (parallel factor analysis), MCR
(multivariate curve resolution), classification, process monitoring,
pattern recognition, optimization, and experimental design. Clearly, a
number of the significant words focus on statistical methodology, for
instance, PLS, PCA, variable selection, and QSAR (quantitative structur-
e–activity relationship). The machine learning methods, such as support
vector machine, neural networks, cluster analysis, and linear discrimi-
nant analysis, are also commonly used. These statistical methods have
been extensively applied or expanded in chemometrics [37]. Other words
indicate commonly used types of chemical data, such as near-infrared
spectroscopy, gas (liquid) chromatography, raman spectroscopy, and
mass spectroscopy.

3.5. Centrality analysis

One of the major issues of concern is how to identify the most central
nodes in the collaboration network. The number of papers, the number of
collaborating authors, the betweenness centrality, and the PageRank
score are chosen as the central indexes. These central measures indicate
some differences from the detailed rankings. However, it can be observed
from Fig. 6 that the most central authors are concordantly identified,
such as Bro, Buydens, Heyden, Leardi, Liang, Massart, Oliverri, Rutledge,
Smilde, Tauler, Walczak, Wu, Xu, and Yu (in alphabetical order).
Compared with the other three centrality measures, the PageRank score
is more convincing because it considers not only the number of edges but
also the influence of the linked nodes. In other words, an author who
collaborated with the more-central authors in the network should be
ranked higher than an author who collaborated with the less-central
authors. The top 100 authors based on these four indexes are provided
in the Supplemental Material.

4. Collaboration network analysis

It is important to conduct an in-depth investigation of the more
central nodes and the more persistent collaboration in a network.
Considering the distribution of the PageRank scores, the threshold of the
score is 0.000169. Next, 800 chemometricians with the top PageRank
scores are chosen to construct the collaboration network. When two
authors (nodes) collaborated in three or more papers, there would be a
connection (edge) between them. Finally, all the authors are clustered
into 405 components according to the links. Among these components,
297 authors have no connections, which are not analyzed in this paper.
All the component analyses are completed by using the Gephi software
(version 0.9.1). Limited to the size of the figure, we only label those
nodes (authors) with top 230 PageRank scores in Figs. 7–10.

4.1. Largest component

The largest component of the network consists of 136 authors,
including the most central authors identified in Fig. 6(d), namely Liang,
Yu, Bro, Massart, Heyden, Tauler, Wu, Smilde, and Xu, and other central
authors, such as Buydens, Walczak, Juan, Berg, and so on. These authors
come from different countries and research institutes. As far as we know,
there are some divergences in their research fields. For example, Bro puts
more weight on food science and chemometric methods. Liang has
conducted much research on traditional Chinese medicines, statistical
methods and algorithms. Therefore, it is likely that the component can be
further clustered into different communities. The CL-BIC procedure
described in Section 2.3 is executed up to 100 iterations, and the optimal
number of communities is 2. This two communities, which are colored
red and green, respectively, are shown in Fig. 7.

We label the larger community as “Big Europe”. This community
consists of the researchers or the research groups from European coun-
tries. The researchers from Vrije Universiteit Brussel, led by Massart and
Heyden, have focused on such areas as analytical chemistry,



Fig. 6. The top 10 central authors ranked by four indexes. (a). The number of published papers, (b). The number of coauthors, (c) Betweenness centrality, (d)
PageRank score.

Fig. 7. Community detection results for the largest component.
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Fig. 8. The second largest component.

Fig. 9. The third largest component.

Fig. 10. The rest of
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pharmaceutical analysis, and chemometric methods. Walczak (from the
University of Silesia, Poland) is closely connected to the group because of
her long-term cooperation with Massart and Heyden in data exploration
and modeling methods. Buydens (Radboud University, Netherlands) and
her group have carried out methodological research in molecular che-
mometrics and spectroscopic image analysis by using machine learning
and statistical methods, such as support vector machine, neural net-
works, classification techniques, and global optimization. She graduated
from Vrije Universiteit Brussel and has collaborated with Heyden in
chemometric methods.

Led by Tauler and Juan, the research team from the Spanish National
Research Council and the University of Barcelona has focused on che-
mometric methods for environmental omics (genomics and metabo-
nomics). Tauler and Juan have also undertaken numerous works using
the components.
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the MCR methods. Fig. 7 shows a connection between Tauler's team and
Buydens' team through Ruckebusch (Lille University of Science and
Technology, France), Duponchel (Lille University of Science and Tech-
nology, France), Wehrens (Radboud University, Netherlands) and so on.

The team led by Bro, from the University of Copenhagen, has con-
ducted numerous studies in many areas of chemometrics, such as
experimental design, spectroscopy, metabonomics, process analytical
technology, and in particular, multiway analysis methods. Bro's research
links Tauler's team via Berg (University of Copenhagen, Denmark), who
has cooperated with Juan in such aspects as the MCRmethod. Smilde and
his team's (University of Amsterdam, Netherlands) research has focused
on the chemometric method and application in analytical chemistry and
metabonomics, among others. And Smilde has collaborated with Massart
and Heyden's team via De Jong, as well as with Bro's team in chemo-
metric methods. Rius' group (Rovira i Virgili University, Spain) has
engaged in the development and the application of multivariate data
analysis methods to explore measurements in chemistry.

The other community shown in Fig. 7 is named “China-Changsha”.
This community consists of two teams of researchers, one led by Yu and
Wu (Hunan University, China) and the other headed by Liang and Xu
(Central South University, China). Both teams are based in Changsha. Yu
andWu's team has carried out a large number of works on various aspects
of chemometrics, especially second-order calibration, multiway calibra-
tion, and pattern recognition. Yu and Wu's team has a long-term coop-
eration with Liang and Xu's team in multivariate calibration and
chemometric modeling. Liang and Xu's team has developed numerous
chemometric methods, such as experimental design, curve resolution,
PLS, classification, and variable selection. They have especially per-
formed much work on the quality control of traditional Chinese medi-
cines. Liang has connections with Chau (Hong Kong Polytechnic
University, Hong Kong), Ozaki (Kwansei Gakuin University, Japan) and
Kvalheim (University of Bergen, Norway). Liang has collaborated with
Chau, Ozaki and Kvalheim in the traditional Chinese medicines, near-
infrared spectroscopy and calibration methods, respectively. Fig. 7 also
shows that the two communities are linked by Xu, who has cooperated a
great deal with Massart in statistical methods and applications.
4.2. Other components

The second largest component of the network, with 21 nodes, is a
loose group. It is represented by Martens (Norwegian University of Sci-
ence and Technology, Norway). His research has focused on multivariate
data modeling. The other important nodes in this component are Roger
(National Research Institute of Science and Technology for Environment
and Agriculture, France), Qannari (Nantes-Atlantic National College of
Veterinary Medicine, France) and so on. Martens has collaborated with
Qannari in multiblock analysis methods.

The third largest network has 13 nodes, represented by Esbensen
(Aalborg University, Denmark) and Reinikainen (Lappeenranta Univer-
sity of Technology, Finland). Esbensen has studied the sampling theory,
the process analytical technology, and so on. Reinikainen's main research
interest is multivariate data analysis.

In Fig. 10, it can be seen that the rests of the components are smaller
collaboration nets. Those top authors are in the rest components, maybe
because they have less long-term partners. For example, Rutledge is in
the twelfth component although he has high PageRank score shown in
Fig. 6. Because he has only collaborated with three authors (nodes) on
more than three papers in our datasets. The fourth to the tenth largest
components are respectively represented by Olivieri (Rosario National
University, Argentina), Hu (Lanzhou University, China), Hubert (Uni-
versity of Li�ege, Belgium), Wold and Trygg (Umeå University, Sweden),
Ferrer (Polytechnic University of Valencia, Spain), Sergent (Aix-Marseille
University, France), and Rutledge (AgroParisTech, France). And the more
details about the fourth to the fifty largest components are also given in
the Supplemental Material.
28
5. Conclusions

In this study, we have collected the chemometric papers published
between 2001 and 2015 in the six journals to analyze the collaboration
patterns and network of chemometric research. The trends of the publi-
cations and coauthors have revealed chemometrics as a fast-growing and
competitive area. Centrality analysis and word cloud has respectively
shown the most active chemometricians and the hot research topics. In
the collaboration network, those most central authors are clustered into
the “Big Europe” and the “China-Changsha” communities and the two
communities are connected to be the largest component of the chemo-
metric society. We have also analyzed the other major components in the
network. The network analysis presents the scientific community struc-
ture of chemometricians in a much clearer manner.

It should be pointed out that our results are based on the collected
data. The results may have some differences if we consider papers pub-
lished in more journals and in a longer period of time. However, our work
provides a new perspective for people to explore chemometrics and un-
derstand how chemometricians work together.
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Appendix. Data pre-processing

1. Data selection

From 2001 to 2015, AC, ACA, JCA and Talanta published 20214,
10156, 11686 and 17336 papers, respectively, but only a few of them
relate with chemometrics [9]. ACA have classified the original research
papers into different categories, such as featured article, atomic spec-
trometry, electrochemistry, molecular spectrometry, separation
methods, chemometrics, and so on. However, ACA had no exact cate-
gories before 2005. AC, JCA and Talanta had no specific subdirectories
named or related to chemometrics. Therefore, we should determine
whether the papers in the four journals belong to the field of
chemometrics.

First, we select the chemometric papers according to the keywords.
Because the keywords are the most core words in a paper. And there is no
keyword information in AC's webpages. Here, we use the keyword plus
part of AC in the ISI system [35] to replace. What's more, the keywords
indicating chemometric methods are expressed in a unified or a similar
way, such as PLS, PCA, and PCR, so they are concise and easy to distin-
guish. These keywords about chemometric methods, for example, pattern
recognition, curve resolution, or multivariable calibration, are found in
review papers [8,38–42] and books [43,44]. Thus, we calculate the
proportion that the terms about chemometric methods appear in key-
words for every paper. If the proportion is more than 0.3, the paper is
automatically regarded as a chemometric article.

From 2001 to 2005, ACA also included the papers published in special
issues and presented in some conferences, such as the 7th International
Conference on Chemometrics and Analytical Chemistry (CAC-2000), the
8th International Conference on Chemometrics and Analytical Chemistry
(CAC), and so on. Thus, these papers are also taken into the datasets.
Finally, we respectively choose 130, 734, 254 and 217 papers from AC,
ACA, JCA and Talanta.

2. Name disambiguation

The authors' names in the academic journals are occasionally vague



C.-Q. Li et al. Chemometrics and Intelligent Laboratory Systems 191 (2019) 21–29
and inconsistent. In some cases, the initial letters of an author's first and
middle names are used, or the first name is spelled out, for example, Y.Z.
Liang or Yizeng Liang and Bernard G.M. Vandeginste or BGM Vandeginste.
Even worse, sometimes, we cannot identify the same author with several
names, such as J. Chen, Jing Chen, and Jun Chen. We have encountered
many similar situations in the pre-processing. It takes a lot of time to
disambiguate the authors' names. The detailed workflow is described as
follows. First, the R package stringdist can be used to measure the simi-
larity of authors' names through the Jaccard method. These names with
high similarities are checked carefully to ensure that they refer to a single
person. Second, if a pair of names with low similarities have the same
first name and last name, some extra information should be used, such as
the email address and the affiliations. After the name disambiguation, the
number of authors has been reduced from 9171 to 8389.

Supplementary data

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.chemolab.2019.05.011.
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