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A B S T R A C T

In high-dimensional data modeling, variable selection methods have been a popular choice to improve the pre-
diction accuracy by effectively selecting the subset of informative variables, and such methods can enhance the
model interpretability with sparse representation. In this study, we propose a novel group variable selection
method named ordered homogeneity pursuit lasso (OHPL) that takes the homogeneity structure in high-
dimensional data into account. OHPL is particularly useful in high-dimensional datasets with strongly corre-
lated variables. We illustrate the approach using three real-world spectroscopic datasets and compare it with four
state-of-the-art variable selection methods. The benchmark results on real-world data show that the proposed
method is capable of identifying a small number of influential groups and has better prediction performance than
its competitors. The OHPL method and the spectroscopic datasets are implemented and included in an R package
OHPL available from https://ohpl.io.
1. Introduction

High-dimensional data analysis problems arise frommany frontiers of
scientific disciplines and technological revolutions [1,2]. For example,
the problems of high-dimensional data have been produced in the
context of chemometrics [3]. In the molecular descriptors datasets or
spectral datasets, several hundreds of expressions of molecules or
wavelengths are potential variables [4–6]. In biomedical studies, enor-
mous numbers of magnetic resonance spectroscopy data or magnetic
resonance images (MRI) and functional MRI data with tens of hundreds
of features are available [7,8]. In the field of bioinformatics, the number
of variables reaches thousands or even more [9]. The validity of
high-dimensional data along with new scientific problems creates op-
portunities and poses challenges for the development of new statistical
techniques. Variable selection [10–13] and dimensionality reduction
[14,15] play the pivotal role in almost all modern statistical research and
discoveries driven by high-dimensional data.

The topic of variable selection has a long history, and various tech-
niques and methods have been developed. One important class of
methods is summarized with the term penalized methods or regularized
methods. There have been a number of works in statistics and machine
learning dealing with penalization in a broad spectrum of problems. A
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common feature of classical model selection criteria, such as Cp, AIC, and
BIC, is a combinatorial optimization problem, which is NP-hard. Since
the computational time of traditional penalized variable selection tools
increases exponentially with the data dimensionality, they become
inadequate or completely fail under modern high-dimensional settings.
To overcome this difficulty, many kinds of new procedures and methods
have been developed. For example, L2-penalty (ridge regression [16]) is
commonly used among statisticians. The drawback of ridge regression is
that it cannot provide a sparse model, for it always keeps all the variables
in the model, although the coefficients of many variables could be near
zero. Followed by Lγ-penalty (bridge regression [17]) which was first
considered as a unifying framework to understand penalized regression
and variable selection. L1-penalty, a special case of bridge regression
named lasso, was introduced by Tibshirani [11]. Owing to the nature of
the L1-penalty, the lasso does not only offer continuous shrinkage but also
performs automatic variable selection to produce a sparse model. Vari-
able selection methods based on L1-penalty have attracted plenty of
research efforts due to its sparsity-inducing property, convenient con-
vexity, and excellent theoretical guarantees. Various generalizations and
variants of the lasso were developed, such as elastic net (EN) [18], fused
lasso (Flasso) [19], and grouped lasso [20], to name a few. These
methods have achieved great success in diverse fields of sciences, such as
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genomics, bioinformatics, econometrics, and finance, to address a variety
of problems. Recently, regularization methods have received increasing
attention due to their sparse representations and high prediction accu-
racy in chemometrics. For example, Filzmoser and others provided a
comparison between sparse methods and non-sparse counterparts to
analyze several high-dimensional datasets from chemometrics and
showed that the sparseness in the model could lead to an improvement of
the prediction or classification performance [21]. Kalivas used L1-pen-
alty, L2-penalty, and their combined forms to full wavelength or sparse
spectral multivariate calibration models or maintenance [22]. Shahba-
zikhah, Kalivas, and others applied the L1-penalty to select basis set
vectors for multivariate calibration and calibration updating [23]. Ran-
dolph used adaptive penalties on generalized Tikhonov regularization to
build regression models for spectroscopy data [24]. Higashi and others
applied sparse regression methods to select fluorescence wavelengths for
accurate prediction of food properties [25].

As described above, dimensionality reduction is another effective
approach to solving the high-dimensional problems in modern statistical
research and scientific discoveries. Partial least squares (PLS) and prin-
cipal component regression (PCR) are two powerful and popular methods
for compressing high-dimensional data sets. Lin et al. proved the equiv-
alence of PLS and PCR under the sufficient dimension reduction (SDR)
framework [26]. PLS is particularly useful when multicollinearity exists
among the variables, and the number of variables (p) is much larger than
the number of samples (n). Since the method has good predictive per-
formance, it has been applied to different fields. For more details, see the
recent review in Mehmood and Ahmed [27] and the references therein.
In addition, many researchers have either theoretically or experimentally
proved that additional variable selection could further improve the
prediction accuracy of PLS models. Many variable selection criteria and
sparsity-inducing procedures based on the PLS model have been pro-
posed in the literature. For example, Chun and Keles proposed sparse
partial least squares (SPLS) regression for simultaneous dimension
reduction and variable selection with applications to the analysis of gene
expression data [9]. Chung and Keles also introduced sparse partial least
squares classification for high-dimensional data [28]. Filzmoser and
others provided a comparison between PLS and SPLS on analyzing
several NIR spectroscopic datasets and showed that the SPLS method
outperforms original PLS [21]. In a typical spectroscopic analysis, there
are often two types of variables selection or wavelength selection
methods. One is to select individual wavelengths: select some wave-
lengths discretely and analyze associations between the property of in-
terest and individual wavelengths [29–32]. The other is to determine
wavelength intervals (groups): study the associations between the
property of interest and intervals of wavelengths [33–36]. As was pre-
cisely summarized in Ref. [22]: “Forming models with wavelengths
selected can be thought of as forming sparse models.”

Although discrete variable selection (individual wavelengths)
methods such as the lasso have achieved great success in many applica-
tions, they do not take the existing data structure into consideration. The
underlying structural information in the data may improve the regression
or classification performance significantly, and help identify the impor-
tant variables. For example, in spectroscopic data, there are two char-
acteristics of the variables (wavelengths): one is the natural spatial order
of wavelengths, and the other one is that consecutive variables carry
similar information. Based on these characteristics of data, Lin and others
proposed a group variable selection method called Fisher optimal sub-
space shrinkage (FOSS) with applications to NIR spectroscopic data. The
intuition behind the method is that the regression coefficients of
consecutive wavelengths should have close values. Empirical results
showed that the performance of their method outperforms its competi-
tors [37].

Recently, Ke, Fan, and Wu considered a more general concept than
sparsity: homogeneity. The intuitive goal of exploring homogeneity is to
divide the regression coefficients into several groups such that the values
of regression coefficients in the same group are the same or close and the
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values of regression coefficients in different groups are significantly
different to each other. Sparsity is a special case of homogeneity where a
large number of groups have zero coefficients solely. For example, ho-
mogeneity exists when the slope parameters in the regression model
come from a network of dependent genes or correspond to neighboring
geographical regions. Besides enhancing predictive performance, the
successful detection of homogeneity can also enable the regression model
to capture the “natural” structure of the data. Several approaches have
been proposed to detect the homogeneity in parameters, for example,
Shen and Huang [39], Ke, Fan, and Wu [38], Ke, Li, and Zhang [40].
However, the methods in these works are confined to genomics data or
panel data, where the datasets do not necessarily have strong correlations
between consecutive predictors. The settings addressed by these re-
searchers are different from what we investigate in this paper. In this
study, we propose a novel method named ordered homogeneity pursuit
lasso (OHPL) to explore homogeneity in spectroscopic data. The main
idea of OHPL is to use the homogeneity of regression coefficients to
construct groups or wavelength intervals. Then, the group prototype (the
most informative variable in each group) is extracted and the sparse
regression techniques, such as lasso, are applied to these prototypes. This
step criterion is inspired by Refs. [41,42]. Finally, the selected pro-
totypes, as well as their corresponding groups are used to build a PLS
model. OHPL has two advantages compared with the original lasso. First,
it can select more than n variables (n is the sample size). Second, it can
identify the homogenous grouping effect that naturally represents the
spatial structure in the predictors. Some of the state-of-the-art penalized
regression methods, including lasso, elastic net, fused lasso, and Sparse
PLS are used for comparison. The empirical results show that, when
compared with the PLS model, the OHPL model has a lower prediction
error and better interpretability. Comparingwith lasso regressions, OHPL
models lead to improved performance on prediction and encourages the
grouping effect. Comparing with the other traditional group variable
selection methods, such as elastic net and fused lasso, the OHPL method
leads to higher predictive accuracy and better detection of rele-
vant variables.

This paper is organized as follows. Section 2 briefly outlines the four
penalized regression methods and describes the proposed method. A
brief introduction and summary of three near-infrared spectroscopy
datasets are given in Section 3. Section 4 presents and discusses the
benchmark results on the three datasets. Finally, Section 5 summarizes
the proposed method and concludes this paper. The appendix gives the
details of Fisher optimal partitions algorithm.

2. Theory and algorithm

In this paper, we consider the following high-dimensional
linear model

y ¼ Xβþ ε (1)

where X is an n� p design matrix and assume x1;⋯; xp are standardized,
y is an n� 1 vector of response and assume it is centered, β is a vector of
parameters, ε is an n� 1 error random vector with mean zero (EðεÞ ¼ 0)
and variance (varðεÞ ¼ σ2I).

2.1. Lasso

The lasso is one of the most popular penalized regression techniques,
which essentially imposes a constraint on the L1 norm of the regression
coefficients [11]. The lasso estimator is defined as

bβlasso ¼ argmin
β2Rp

1
2
ky-Xβk22 þ λ1kβk1 (2)

where λ1 � 0 is a fixed tuning parameter, controlling the degree of

sparsity in the estimate bβlasso. In this work, we use 5-fold cross-validation
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to guide the choice of the optimal tuning parameter λ1, which is the one
giving the smallest CV error. The lasso continuously shrinks regression
coefficients toward zero, thus improving its prediction ability via the
bias-variance trade-off. Furthermore, because of the properties of the

L1-penalty, several coefficients in the resulting vector bβlasso will be
exactly zero if λ1 is large enough. Therefore, the lasso can be regarded as
a variable selection technique. It has been widely used in genomics,
bioinformatics, econometrics, and finance among others. Recently, the
lasso has been used for wavelength selection and was found to produce
lower prediction errors than full wavelength models [22].
2.2. Elastic net (EN)

The lasso has proven to be a successful variable selection method in
many modern applications, but it has some drawbacks under certain
settings. First, the maximum number of non-zero coefficients estimated
by lasso is limited by the number of samples [18]. Also, if a group of
relevant variables is highly correlated, the lasso tends to include only one
variable from the group and ignores which one is selected. To overcome
these limitations, Zou and Hastie [18] developed a modified version of
lasso named elastic net. The estimator of the elastic net is given as follows

bβEN ¼ argmin
β2Rp

1
2
ky-Xβk22 þ λ1kβk1 þ λ2kβk22 (3)

where λ1 � 0; λ2 � 0 are two tuning parameters. The first tuning
parameter λ1 encourages sparsity in the regression coefficients; the sec-
ond tuning parameter λ2 encourages the grouping effect. Obviously,
elastic net is equivalent to the lasso penalty when λ2 ¼ 0, and equivalent
to the ridge penalty when λ1 ¼ 0. It is worth noting that the parameter λ1
and λ2 could be transformed to an equivalent form λ and α 2 ½0;1�, where
α is a weighting parameter between the ridge regression and lasso [51].
Fig. 1. The flowchart of t
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The two tuning parameters λ and α are chosen by cross-validation as
suggested by Zou and Hasite [18]. We first produce a grid of α values
from 0 to 1 by increment of 0.05. Then, for each fixed α, the optimal value
of λ is chosen by 5-fold cross-validation. The optimal λ is the one giving
the highest CV prediction accuracy.

Elastic net has been a favorable variable selection procedure for high-
dimensional regression analysis of biological datasets [43] and spectro-
scopic datasets [22,44].

2.3. Fused lasso

The fused lasso is another modified version of lasso and is defined as

bβFlasso ¼ argmin
β2Rp

1
2
ky-Xβk22 þ λ1

Xp

j¼1

��βj��þ λ2
Xp

j¼2

��βj � βj�1

�� (4)

where λ1 � 0; λ2 � 0 are two tuning parameters. The first tuning
parameter λ1 encourages sparsity in the regression coefficients; the sec-
ond tuning parameter λ2 encourages sparsity in their differences, i.e. the
smoothness of the coefficient profiles βj as a function of j. As discussed
above, the tuning parameter λ1 and λ2 could be rewritten to an equivalent
form λ and γ 2 ½0; 1�, where γ is a trade-off parameter between the second
term and the third term of equation (4). Here, we use 5-fold CV to select
the two tuning parameters λ and γ. We first produce a grid of γ values
from 0 to 1 by increment of 0.05. Then, for each fixed γ, the optimal value
of λ is chosen by 5-fold cross-validation. The optimum λ and γ are the
ones giving the highest CV prediction accuracy. The fused lasso is a high-
performance method for exploring homogeneity in the cases where
variables have certain kinds of natural ordering [19].

Fused lasso has been successfully applied to some comparative
genomic hybridization data, mass spectroscopy data [19], and HIV sur-
veillance cohort data [45].
he OHPL algorithm.
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2.4. Sparse partial least squares (SPLS)

Sparse PLS is a simultaneous dimension reduction and variable se-
lection method [9]. Its estimator is given as follows

bω ¼ argmin
C;ω;kωk2¼1

�� kωTMωþ ð1� kÞðc� ωÞTMðc� ωÞ þ λ1kck1

þ λ2kck22
�

(5)

where ω is the original direction vector, M ¼ XTyyTX, and c is a surro-
gate of the direction vector. SPLS has four tuning parameters
K >0;0< k< 1; λ1 � 0; λ2 � 0, K is the number of components, k is a
parameter that controls the compromise between the first term ωTMω
and the second term ðc�ωÞTMðc� ωÞ, λ1 encourages sparsity in a sur-
rogate of vector c. We note that equation (5) imposed the L1-penalty onto
the surrogate of the weight vector c instead of the original weight vector
ω. As was pointed out by Chun and Keles [9], this operation can produce
much sparer solutions than that obtained by simply adding a penalty to
the weight vector ω. In addition, they also pointed out that there are only
two key tuning parameters K and λ1 to be selected for univariate y in
equation (5). Therefore, we use 5-fold CV to select two tuning parameters
K and λ1. We first produce a sequence of K values from 1 to a positive
integer (e.g. 10) by increment of 1. Then, for each fixed K, the optimal
value of λ1 is chosen by 5-fold cross-validation. The optimum λ1 and K are
the ones giving the smallest CV error.

2.5. Ordered homogeneity pursuit lasso (OHPL)

The OHPL method is proposed to select informative variables with
high correlation. As described above, this method uses the homogeneity
of regression coefficients to construct the groups at first. Then, the group
prototypes (the most correlative variable with the response y in each
group) are extracted, and a sparse estimation procedure, such as lasso, is
applied to these representatives. Finally, the selected prototypes, as well
as their corresponding groups, are used to build a PLS model. Note that
there are some parameters to be tuned in this algorithm; we will discuss
how to choose them in section 2.6. The detailed procedure is described
as follows.

Step 1. With the calibration set, a PLS model is built on X, and the
regression coefficients βpls are calculated.
Step 2. To construct the groups, Fisher optimal partitions algorithm
[37,46] is applied to the PLS regression coefficients βpls.
Step 3. Group representatives (prototypes) extraction, one from each
group, by calculating the maximum of all inner products between
each group member xi and the response y [47]. The group repre-
sentatives are calculated as follows:

xRi ¼ argmax
i2Gj

��xT
i y

�� (6)

where xi is standardized, the response y is centered and Gj is the
j-th group.

Step 4. The sparse estimation method (lasso) is applied to these
representatives.
Step 5. With the selected (by the lasso) representatives according to
step 4, as well as their corresponding groups, a PLS model is fitted and
applied to predict the spectra of an independent test set.

The flowchart of the OHPL algorithm is showed in Fig. 1.

2.6. Parameter setting/tuning

The OHPL algorithm has three tuning parameters: the number of
component K in step 1, the number of groups g in step 2, and the
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L1-penalty parameter λ1 in step 4. As described above, we use 5-fold CV
to choose the value K, g, and λ1. First, a 5-fold CV was used to optimize
the component number parameter K. Then, for the fixed value K, we use
grid search with 5-fold CV to optimize the number of groups g and the
regularized parameter λ1.

2.7. Performance evaluation

Recently, some new validation methods are introduced for assessing
the predictive ability of the models [48]. The most efficient evaluation
strategy is performed by dividing the datasets into a calibration set and
an independent test set. The calibration set is used for the calibration of
its parameter values, variable selection and modeling, and the indepen-
dent test set is used for evaluation of the calibration model. In this study,
the training set is used for developing the model, choosing tuning pa-
rameters and implementing variable selection. The independent test set
is then used to assess the calibration model. In addition, the root mean
square error (RMSE), coupled with the coefficient of determination (Q2)
for both the training and test sets, are used to assess the performance of
the different methods. RMSE is given as follows:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

ðby � yÞ2

n

vuut
(7)

where by is the predicted response value and n is the number of samples.
The coefficient of determination is defined by the formula:

Q2 ¼ 1�
Pn
i¼1

ðyi � byiÞ2
Pn
i¼1

ðyi � yiÞ2
(8)

where y is the average of predicted value of response.
RMSEC represents the RMSE value from the training set. The notation

RMSEP indicates that the RMSE is calculated from an independent test
set. Q2

C and Q2
P are the coefficients of determination for these situations,

respectively.

3. Datasets and software implementation

3.1. Beer dataset

The beer spectral dataset contains 60 samples published in Ref. [49].
They are recorded with a 30 mm quartz cell directly on the undiluted
degassed beer and measured from 1100 to 2250 nm (576 data points) in
steps of 2 nm. Original extract concentration which illustrates the sub-
strate potential for the yeast to ferment alcohol is considered as the
property of interest. Also, we randomly split the data set into a training
data set containing 70% of the data and a test data set with the
remaining samples.

3.2. Wheat dataset

The entire data consists of 100 wheat samples with specified protein
and moisture content. Samples were measured by diffuse reflectance as
log (I/R) from 1100 to 2500 nm (701 data points) in 2 nm intervals. The
protein of wheat is used as dependent variable y in this study. More
details are described in Ref. [50]. Besides, the dataset is split into a
calibration set (70% of the samples, 70 samples) and an independent test
set (30% of the samples, 30 samples) with the Monte Carlo method.

3.3. Soil dataset

The soil dataset contains 108 sample measurements from the wave-
length range of 400–2500 nm (visible and near infrared spectrum),



Table 1
The benchmark results of different methods on the beer dataset. nVAR: number of variables; nLV: number of latent variables; RMSEC: root-mean-square error of calibration set; RMSEP: root-
mean-square error of prediction; Q2

C : coefficient of determination of calibration set; Q2
P : coefficient of determination of test set; and benchmark results with the form mean value ± standard

deviation in 50 runs.

Metrics PLS Sparse PLS lasso elastic net fused lasso OHPL

nLV 5.7±0.7 2.7±1.0 – – – 4.5±1.6
nVAR 576 140.4±46.1 26.6±5.8 36.9±9.9 366.2±71.9 76.4±19.5
RMSEC 0.0097±0.0122 0.1370±0.0439 0.1096±0.0280 0.1008±0.0178 0.1067±0.0409 0.1409±0.0283
RMSEP 0.5379±0.1972 0.2092±0.0521 0.2590±0.0771 0.2634±0.0877 0.2417±0.0762 0.1692±0.0338
Q2

C 0.9999±0.0000 0.9963±0.0021 0.9979±0.0010 0.9982±0.0006 0.9978±0.0013 0.9965±0.0015

Q2
P 0.9145±0.1889 0.9892±0.0088 0.9809±0.0221 0.9790±0.0302 0.9833±0.0191 0.9929±0.0052

Fig. 2. The original NIR spectra of the beer extract concentration data (top), and a comparison of the variables selected by lasso, elastic net, fused lasso, sparse PLS, and OHPL on the beer
dataset (bottom).
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which were scanned with an NIR spectrophotometer, and fluorescence
excitation-emission matrices (EEMs) were recorded with a spectrofluo-
rometer. In this study, we choose 1100–2500 nm range of NIR (700 data
points) as the design matrix X based on the original paper [51]. Soil
organic matter (SOM) is considered as the property of interest y. More
details about the data are described in Ref. [51]. Besides, we randomly
split the data set into a training data set containing 70% of the samples
and a test data set with the remaining samples.

3.4. Software implementation

All the code and experiments are written and implemented in R
(https://www.r-project.org). There are several packages for PLS
modeling in R, such as the pls package [52] and the enpls package [53].
In this study, PLS is implemented with the pls package [52]. The glmnet
package [54] is used to fit lasso and elastic net models. The genlasso
package [55] is applied to fit fused lasso models. The spls package [56]
provides functions for fitting sparse PLS regression models.

4. Results and discussion

To evaluate the performance of OHPL, some state-of-the-art methods,
such as Sparse PLS, lasso, elastic net and fused lasso, are tested on three
datasets. The common trait of these methods is using L1-penalty term to
select the important variables. Many high-performance variable selection
methods have been developed in the chemometrics community,
including but not limited to the following methods: MW-PLS [33,34],
CARS [31] and iVISSA [36]. This paper will focus on the discussion of the
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penalized regression techniques; comparisons of those methods are not
considered in this paper. In order to ensure reproducibility and stability
of the experiment results, each dataset was randomly split for 50 times to
produce different training sets and test sets. Each method was applied to
the 50 different training sets, and predicted on the corresponding 50 test
sets. The final evaluation result was the average of the results from the
50 runs.
4.1. Beer dataset

Table 1 presents the evaluation results obtained by full-spectrum PLS,
Sparse PLS, lasso, elastic net, fused lasso, and OHPL. From Table 1, we
can see that the five methods with variable selection effect all have better
prediction performance than the full-spectrum PLS on this dataset. Be-
sides, compared to the results of PLS, the RMSEP values of OHPL
decreased remarkably from 0.5379 to 0.1692. Moreover, the OHPL
method outperforms the other variable selection methods. OHPL has the
lowest RMSEP (0.1692), followed by Sparse PLS (0.2092), fused lasso
(0.2417), lasso (0.2590) and elastic net (0.2634). OHPL has the highest
Q2

P (0.9929), followed by Sparse PLS (0.9892), fused lasso (0.9833), lasso
(0.9809) and elastic net (0.9790). As described above, OHPL can
significantly improve the accuracy of the original lasso, and prediction
ability and interpretability of the PLS method.

Fig. 2 Shows the variables selected by different methods on the beer
dataset within the 50 experiments. Fused lasso (366.2) and Sparse PLS
(140.4) tend to select a larger number of variables, while the nVAR ob-
tained by OHPL (76.4), elastic net (36.9), and lasso (26.6) are lower.

https://www.r-project.org


Table 2
The benchmark results of different methods on the wheat dataset. nVAR: number of variables; nLV: number of latent variables; RMSEC: root-mean-square error of calibration set; RMSEP:
root-mean-square error of prediction; Q2

C : coefficient of determination of calibration set; Q2
P : coefficient of determination of test set; and benchmark results with the form mean

value ± standard deviation in 50 runs.

Metrics PLS Sparse PLS lasso elastic net fused lasso OHPL

nLV 9.9±0.3 7.9±0.3 – – – 7.6±0.7
nVAR 700 612.1±123.5 12.6±2.4 83.4±53.9 130.5±78.8 84.5±45.1
RMSEC 0.3296±0.0287 0.4006±0.0383 0.6866±0.0560 0.6876±0.0569 0.6678±0.1146 0.2826±0.0615
RMSEP 0.5301±0.0712 0.5819±0.1004 0.7472±0.1381 0.7467±0.1371 0.7344±0.1818 0.2889±0.0310
Q2

C 0.9100±0.0142 0.8668±0.0290 0.6061±0.0651 0.6049±0.0657 0.6244±0.1070 0.9321±0.0263

Q2
P 0.7411±0.0838 0.6809±0.1121 0.4976±0.1571 0.4992±0.1540 0.4889±0.2333 0.9115±0.0232

Fig. 3. The original NIR spectra of the wheat protein data (top), and a comparison of the variables selected by lasso, elastic net, fused Lasso, sparse PLS, and OHPL on the wheat
dataset (bottom).
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From Fig. 2, we can observe that the wavelengths selected by elastic net
and lasso are quite similar, whereas the elastic net selected more vari-
ables than the lasso. Nine groups selected by fused lasso are located at the
region of 1100–1200 nm, 1300–1350 nm, 1400–1590 nm,
1680–1760 nm, 1780–1820 nm, 1878–1908 nm 1920–2000 nm,
2050–2100 nm, and 2122–2250 nm. The intervals selected by Sparse PLS
and OHPL are quite similar. The groups selected by Sparse PLS are
located at 1132–1174 nm and 1206–1362 nm. The group selected by
OHPL is the region of 1172–1352 nm, which corresponds to the first
overtone of O–H stretching bond vibration [55].

4.2. Wheat dataset

For the wheat protein dataset, Table 2 lists the results obtained from
the different methods. From the table, we can easily observe that the best
predictions concerning RMSEP are all achieved by OHPL. Compare to the
Table 3
The benchmark results of different methods on the soil dataset. nVAR: number of variables; nLV:
mean-square error of prediction; Q2

C : coefficient of determination of calibration set; Q2
P : coefficie

deviation in 50 runs.

Metrics PLS Sparse PLS lasso

nLV 10±0.0 10±0.0 –

nVAR 700 546.2±162.7 24.8±7.8
RMSEC 1.6276±0.1179 1.5955±0.1426 4.030±0.1591
RMSEP 2.2516±0.3543 2.1437±0.3123 4.1248±0.461
Q2

C 0.9769±0.0036 0.9771±0.0004 0.8612±0.015

Q2
P 0.9464±0.0235 0.9519±0.0036 0.8300±0.052
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results of the full spectra, the RMSEC and RMSEP values for OHPL
decreased remarkably by 14.3% and 45.5%, respectively. Compare to the
results of the lasso, the RMSEC and RMSEP values for OHPL decreases
remarkably by 58.8% and 61.3%, respectively. The prediction perfor-
mance of the original lasso can be significantly improved. OHPL also
outperforms other methods significantly with the smallest RMSEC and
RMSEP. In addition, OHPL generates the smallest standard deviation for
RMSEP, indicating the highest stability on this dataset. Moreover, OHPL
shows the highest Q2

C (0.9321) and Q2
P (0.9115), follows by PLS (0.9100

and 0.7411), Sparse PLS (0.8668 and 0.6809), elastic net (0.6049 and
0.4992), and lasso (0.6061 and 0.4976). The prediction error of fused
lasso is the highest with the lowest Q2

C and Q2
P , as displayed in Fig. 5 (B).

This example also demonstrates that the generalizations of lasso and
OHPL can obtain good performance when dealing with spectral data.

Fig. 3 displays the variables selected by the five variable selection
methods on the wheat dataset. SPLS selects the largest number of
number of latent variables; RMSEC: root-mean-square error of calibration set; RMSEP: root-
nt of determination of test set; and benchmark results with the form mean value ± standard

elastic net fused lasso OHPL

– – 9.9±0.2
78.3±42.8 251.6±49.1 392.0±106.4
4.0570±0.1413 2.9819±0.3354 1.4766±0.1784

4 4.1425±0.4735 3.2087±0.3986 1.6533±0.3535
8 0.8594±0.0154 0.9241±0.0133 0.9812±0.0004
8 0.8289±0.0520 0.8932±0.0473 0.9736±0.0080



Fig. 4. The original NIR spectra of the soil organic matter data (top), and a comparison of the variables selected by lasso, elastic net, fused Lasso, sparse PLS, and OHPL on the soil
dataset (bottom).
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variables (612.1), while lasso selects the smallest number of variables
(12.6). As mentioned before, the wavelengths selected by elastic net are
similar to those selected by lasso, but the wavelengths selected by elastic
net are more grouped. The reason is that elastic net takes the L2-penalty
into account, thus encourages the grouping effect. Fused lasso identifies
seven intervals in this dataset; they are located in 1132–1188 nm,
1392–1408 nm, 1602–1664 nm, 1912–1938 nm, 2090–2148 nm, and so
on. The region 1100–1900 nm and the region 2218–2240 nm are iden-
tified by Sparse PLS. The variables selected by OHPL are located in the
region 1100–1300 nm, which is consistent with the wavelengths selected
by the GA-PLS-RC [57]. The selected informative intervals are distributed
in a broad region, which, is implicitly in accordance with the complex
structure characteristics of protein. This wide region contains the third
overtones of C–H groups (850–865 nm), the second overtones of C–H
groups (near 888 nm), the second overtones of O–H groups (972–988),
the second overtones of N–H groups (near 1012 nm), and the in-
teractions between them [49].
4.3. Soil dataset

The results on the soil dataset obtained by different methods are
illustrated in Table 3 and Fig. 4. It is obvious that the best prediction
regarding RMSEP is obtained by OHPL. Moreover, from Table 3, we can
observe that elastic net and lasso obtained similar prediction accuracy
and there is a clear ranking of prediction accuracy for four alternative
methods on this dataset: OHPL > Sparse PLS > PLS > fused lasso. By
comparison, lasso has the largest standard deviation ofQ2

P on this dataset.
However, we can find an interesting phenomenon that lasso has a smaller
standard deviation of RMSEP than elastic net. Furthermore, another
interesting observation is that the standard deviations of RMSEP between
PLS and OHPL differ little, while the standard deviations of Q2

P differ
greatly. SPLS has the smallest standard deviation among five variable
selection methods, which means SPLS obtains the highest stability of all.
In addition, OHPL has a much smaller standard deviation than lasso. As a
summary, Fig. 5 (C) clearly illustrates the fact that the OHPL method is
efficient in overcoming the drawbacks of the lasso while improving the
prediction accuracy of the original lasso.

Fig. 4 shows the variables selected by different methods on the soil
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dataset. For this dataset, Sparse PLS and OHPL tend to select a larger
number of variables, while the nVAR values obtained by lasso and elastic
net are lower. Based on previous studies [50], we know that the infor-
mative spectra regions are near 1420 nm (region 1), 1900–1950 nm
(region 2), 2040–2260 nm (region 3), and 2440–2460 nm (region 4).
These intervals are well in agreement with the major absorption features
assigned for organic matter, such as “the absorption at around 1420 nm
in the first derivate of the spectra can be attributed to O–H groups in
water or cellulose, or to C–H2 groups in lignin. The absorption at
1900–1950 nm may indicate O–H groups in water or various functional
groups present in cellulose, lignin, glucan, starch, pectin and humic acid”
[50]. The wavelengths selected by elastic net are similar to those selected
by lasso, but the wavelengths selected by elastic net are more concen-
trated than those selected by lasso. These wavelengths at near 1566 nm,
1914 nm, 2040 nm, 2260 nm, and 2498 nm. Lasso and elastic net failed
to select the informative wavelength region 1 and region 3. Fig. 4 shows
that fused lasso can select all the informative wavelength region, but it
also picks some other wavelength bands, such as 1166–1246 nm and
1334–1386 nm. Sparse PLS selects the largest number of variables. These
variables are distributed in three wide bands, such as 1176–1430 nm,
1512–1890 nm, and 1900–2500 nm. In contrast, OHPL selects a smaller
number of variables than Sparse PLS. They are near 1420–1554 nm,
1686–2086 nm, 2264–2302 nm, 2324–2354 nm, and 2460–2500 nm. All
the selected regions correspond to the chemical bond except the region of
2324–2354 nm. It is noteworthy that the variables of 2324–2354 nm
were successfully selected by fused lasso, Sparse PLS, and OHPL, but
were failed to obtain by lasso and elastic net. Interestingly, the first three
methods (Fused lasso, Sparse PLS, OHPL) have better predictive perfor-
mance than the last two methods, so it is possible that the region of
2324–2354 nm contains quantitative information for organic matter.

5. Conclusions

In this paper, we proposed a new method named ordered homoge-
neity pursuit lasso (OHPL) for group variable selection with application
to high-dimensional spectroscopy data. OHPL takes the homogeneity
structure in high-dimensional data into account. It can be viewed as an
improved version of lasso which also has the grouping effect to



Fig. 5. Q2
C and Q2

P of PLS, lasso, elastic net, fused lasso, sparse PLS, and OHPL on the three datasets.
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automatically select strongly correlated important variables. Some gen-
eralizations of lasso, such as elastic net and fused lasso, were proposed to
deal with the problems of the original lasso. However, when being
applied to three real-world spectroscopic datasets, OHPL outperforms all
of them in terms of both predictive performance and accuracy of group
variable selection.

Empirical studies on three real-world datasets using different per-
formance metrics showed that OHPL selects more important group
69
variables and has better predictive performance than the other state-of-
the-art methods, including Sparse PLS, lasso, elastic net, and fused
lasso. Therefore, we believe that OHPL is a promising method for
regression in the high-dimensional settings. Although OHPL was only
applied to datasets with a natural order in this work, we should point out
that it can be certainly used to analyze high-dimensional data with more
general group structures. These are beyond the scope of this paper, and
our future work will focus on them.
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Appendix. The Fisher optimal partitions algorithm

To construct the groups of variables, we applied the Fisher optimal partitions (FOP) procedure to the regression coefficients of PLS. This procedure
was introduced by W. D. Fisher in 1958 [46]. Based on Hartigan's [58] work, we describe the details of FOP as follows.

Given n ordered objects a1; a2;⋯; an, we want to split them into K groups, and these groups are constrained to consist of intervals of ob-
jects ðai; aiþ1;⋯; ajÞ.

Step 1. For the k-th group Gk ¼ ðai; aiþ1;⋯; ajÞ, for all i, j, 1 � i< j � n, the diameter Dði; jÞ is determined by Dði; jÞ ¼ Pj
t¼iðat � akÞ2, where ak is the

mean of the corresponding group.
Step 2. For the number of groups 2, the errors of “optimal partitions” is calculated by
L½Pði; 2Þ� ¼ min
2�h�i

½Dð1; h� 1Þ þ Dðh; iÞ� (A-1)

where 2 � i � n and for i � n and g � K, Pði; gÞ denotes the optimum g partition of objects a1; a2;⋯; ai.

Step 3. For each g, the errors of the optimal partitions L½Pði; gÞ� is computed by
L½Pði; gÞ� ¼ min
g�h�i

½L½Pðh� 1; g� 1Þ� þ Dðh; iÞ� (A-2)

where g � i � n and 3 � g � K.

Step 4. The optimal partition Pðn;KÞ is searched from the table of errors L½Pði; gÞ�ð1 � g � K; 1 � i � nÞ by the smallest j satisfying
L½Pðn;KÞ� ¼ L½Pðj� 1;K � 1Þ� þ Dðj; nÞ. Then the last group is ðj; jþ 1;⋯; nÞ. Next, find j0 such that
0
L½Pðj� 1;KÞ� ¼ L½Pðj� 1;K � 1Þ� þ Dðj ; j� 1Þ: (A-3)

and the second-to-last group of Pðn;KÞ is ðj0; j0 þ 1;⋯; j� 1Þ, and so forth.
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