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Integrating Multiple Evidence Sources to Predict Adverse
Drug Reactions Based on a Systems Pharmacology
Model

D-S Cao1*, N Xiao2, Y-J Li1, W-B Zeng1, Y-Z Liang3, A-P Lu4, Q-S Xu2 and AF Chen1

Identifying potential adverse drug reactions (ADRs) is critically important for drug discovery and public health. Here we
developed a multiple evidence fusion (MEF) method for the large-scale prediction of drug ADRs that can handle both
approved drugs and novel molecules. MEF is based on the similarity reference by collaborative filtering, and integrates
multiple similarity measures from various data types, taking advantage of the complementarity in the data. We used MEF to
integrate drug-related and ADR-related data from multiple levels, including the network structural data formed by known
drug–ADR relationships for predicting likely unknown ADRs. On cross-validation, it obtains high sensitivity and specificity,
substantially outperforming existing methods that utilize single or a few data types. We validated our prediction by their
overlap with drug–ADR associations that are known in databases. The proposed computational method could be used for
complementary hypothesis generation and rapid analysis of potential drug–ADR interactions.
CPT Pharmacometrics Syst. Pharmacol. (2015) 4, 498–506; doi:10.1002/psp4.12002; published online on 11 September 2015.

Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC? � One of the main objectives in drug discovery and public
health is to predict and monitor a drug’s ADRs. Systems pharmacological models are urgently needed to combine vari-
ous types of data for accurately predicting likely ADRs because of complex mechanisms underlying ADRs. • WHAT
QUESTIONS DID THIS STUDY ADDRESS? � We developed a multiple evidence fusion framework for systems pharma-
cology, and applied it to integrate drug-related and ADR-related data from multiple levels, the network structural data
formed by known drug–ADR relationships for predicting likely unknown ADRs. • WHAT THIS STUDY ADDS TO OUR
KNOWLEDGE � Our results showed that our proposed model obtains high sensitivity and specificity, substantially out-
performing existing methods that utilize single or a few data types. By integrating drug, ADR, and network-related infor-
mation, we established a high accuracy systems pharmacology model for predicting potential ADRs. • HOW THIS
MIGHT CHANGE CLINICAL PHARMACOLOGY AND THERAPEUTICS � Our method is simple, applicable on a large
scale, useful to predict or monitor drug ADRs, test a complementary hypothesis generation, and realize rapid analysis of
potential drug–ADR interactions.

Drug use in medicine is based on a balance between
expected benefits (already investigated indications before
marketing authorization) and possible risks (i.e., adverse
effects). Adverse drug reactions (ADRs) are undesirable
effects that occur even when a drug is administered at
the proper dose in the correct manner for an appropriate
indication.1 There is a major concern for ADRs in both
the drug development and public health fields.2 In the
pharmaceutical industry, ADRs are one of the main
causes of failure in the process of drug development and
of drug withdrawal once a drug has reached the market.
It is also the top reason for drug discontinuation in
patients. In the healthcare industry, unrecognized or
underreported ADRs not only cause preventable human
suffering and costs to the healthcare system, but also

unnecessarily undermine the public’s faith in drug therapy.
Serious ADRs account for an estimated over two million
hospitalizations annually. The fatal serious ADRs have
become the 4th–6th leading causes of death annually.
Studies in Europe and Australia have yielded similar esti-
mates. It takes many years of study and safety surveil-
lance to identify these ADRs completely. This delay in
understanding impedes our ability to identify, evaluate,
and use ADRs to optimize drug selection and dose. There
is therefore a great need to predict and monitor a drug’s
ADRs throughout its life cycle, from preclinical screening
phase to postmarketing surveillance.

To reduce ADR-related morbidity and mortality, several
computational attempts to identification potential ADRs have
been made, including: I) generating various drug-related
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profiling (e.g., chemical profiling, cellular response profiling)
to predict ADRs at different levels.3–6 For example, ADRs at
the level of organ systems are analyzed with screening data
from the PubChem BioAssay database.7 The premise for
this is that some of the molecular actors of ADRs involve
interactions detectable in compound screening campaigns.
A study proposed by Liu et al. integrates the profiling from
chemical, biological, and phenotypic properties of drugs to
establish the classification model.8 II) Utilizing sophisticated
network inference methods such as network diffusion. Atias
and Sharan proposed a diffusion process in the ADR simi-
larity matrix to score each ADR by assuming that similar
ADRs receive similar scores.9 A similar approach was pro-
posed by Cheng et al., using a two-step resource allocation
process.10 These two methods only utilize a part of the net-
work structure information, and neglect drug or ADR intrin-
sic properties. The pharmacological network model developed
by Cami et al. improves this situation by implicitly introducing
several network, taxonomic, and intrinsic covariates.11

III) Detecting true signals from suspected adverse drug
events (ADEs).12 Currently, systematic evaluation of five
signal detection algorithms was performed by Harpaz
et al.13 To varying degrees, these methods suffer from
low sensitivity or specificity. They also involve well-known
limitations, such as the difficulty of detecting rare or
delayed-onset ADEs,14–16 as well as ADEs that are already
common in the treatment population.17 IV) Identifying can-
didate targets that have a causal connection with
ADRs.18,19 Currently, a large-scale study proposed by Kuhn
et al. systematically identifies protein-ADR associations by
correlating drug–target interaction data with drug–ADR
interaction data.20 Furthermore, the identification of genetic
risk factors for ADRs could lead to the safer use of drugs.
Some genetic and genomic approaches may facilitate the
identification of biological risk markers and reveal novel
underlying mechanisms.21

Here we propose an approach for predicting novel asso-
ciations between drugs and ADRs. Our method is logically
derived from the following assumptions: I) Drug behavior at
different levels provide some clues to understanding ADRs;
II) semantic relationships between ADRs help us infer new
ADRs for some drugs; III) the global or local information
from the drug–ADR interaction network could inform us
how to infer unknown drug–ADR associations. These
assumptions are not universally true, but their degree of
truth determines the accuracy and utility of our method.
Our algorithmic framework follows the collaborative filtering
system widely used in various electronic commerce web-
sites. Given a query about a drug–ADR pair, we exploited
several drug–drug or ADR–ADR similarity measures, and
employed three aspects of recommendations based on
three assumptions. The score of each drug–ADR pair
according to each similarity measure allows us to deter-
mine the likelihood that the query concerning the drug–
ADR pair interacts. The knowledge from multiple resources
is systematically integrated to generate a multiscale model
for predicting ADRs, following the idea of systems pharma-
cology. The prediction process is strictly evaluated and vali-
dated by different evaluation schemes. Importantly, the
proposed computational method can be used for a comple-

mentary hypothesis generation and rapid analysis of poten-
tial drug–ADR interactions.

METHODS

Full details of the method and results are provided in the
Supplementary Data online.

Data sources
Drugs and their associated ADRs were obtained from
SIDER (as of October 2009).22 This dataset consists of
880 drugs, 1,382 ADRs, and 61,102 drug–ADR associa-
tions. The ADRs in the databases were mapped to the
MedDRA preferred term (PT). For a very small number of
ADR names (less than 1%), we were not able to find a
mapping at the MedDRA PT. We excluded those ADR
names from our analysis. Moreover, drugs and ADRs vary
greatly in their number of associations. Some ADRs are
present in almost all drugs, while others are associated
with very few drugs, and similarly for drugs. Thus, we fil-
tered from the association data drugs and ADRs that lie at
the top 5%, as well as ADRs and drugs having fewer than
two associations. The resulting drug–ADR network con-
tained 746 drugs, 817 ADRs, and 24,803 associations. All
drug and ADR-related information was collected from differ-
ent databases.

Similarity measures
We used node attribute-based and network structure-based
similarity measures. For node attribute-based similarities,
we computed eight drug–drug similarity measures and five
ADR–ADR similarity measures, respectively, including
chemical-based (ECFP), ATC-based (ATC), sequence-
based (ProSeq), closeness in a PPI network (PPI), GO-
based (ProGO), pathway-based (Pathway), disease-based
(Disease), CMap-based (CMap), UMLS-based (UMLSLin
and UMLSJCN), ADR coexist-based (Coexist), MedDRA-
based (MedDRA), and ADR-related protein-based (APro).
For network structure-based similarity, we computed three
drug–drug and ADR–ADR similarity measures, including
network neighbor-based (DNN and ANN), SimRank-based
(DSimRank and ASimRank), path-based (DKatz and
AKatz), and preferential attachment score (PAS). For the
definition of each similarity, please see the Materials and
Methods in the Supplementary Materials.

Generating classification features
The classification features were constructed from drug–
drug and ADR–ADR similarity measures, resulting in 13
node attribute-based features and seven network structure-
based features. Herein, we extended neighborhood-based
collaborative filtering recommendation methods to generate
drug/ADR-based recommendation scores as classification
features.23 For a given similarity measure, the score of a
given drug–ADR association (di-aj) is calculated by consid-
ering the similarity, according to the given pair, of k most
similar to known drugs or ADRs to those in this
association.

For a drug–ADR pair di-aj, a linkage between di and aj is
determined by the following two predicted scores:
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Scoreðdi ; ajÞ ¼

X

m2N kðiÞ
sðdi ; dmÞtm; j
X

m2N kðiÞ
tm;j

where s(di, dm) is similarity between drugs di and dm (i.e.,
various similarity measures from drugs). N_k(i) denotes the
set of k drugs most similar to drug i. tm,j is equal to 1 if
drug m connects to ADR j, otherwise 0. Here, when the
number of drugs most similar to drug i in the dataset is
less than k, we used all these drugs to calculate the pre-
dicted score.

Scoreðdi ; ajÞ ¼

X

n2N kðjÞ
sðaj ; anÞti ; n
X

n2N kðjÞ
ti ;n

where s(aj, an) is similarity between ADRs aj and an (i.e.,
various similarity measures from ADRs). N_k(j) denotes
the set of k ADRs most similar to ADR j. ti,n is equal to
1 if drug i connects to ADR n, otherwise 0. Here, when
the number of ADRs most similar to ADR j in the dataset
is less than k, we used all these ADRs to calculate the
predicted score. For each similarity measure, the optimal
k value could be selected to generate the best classifica-
tion feature by maximizing the AUC score (Supporting
Figure S1).

Performance evaluation and novel predictions
We constructed different performance evaluation strategies
to fully evaluate the prediction performance of our method.
We predicted all 746 3 817 drug–ADR pairs, and selected
those associations with high prediction confidence by set-
ting a cutoff according to the precision-recall curve obtained
from cross-validation. These predicted associations were
further validated by manually looking up the drug–ADR
associations from the SIDER (those associations from 2009
to 2012) and OFFSIDES databases. For detailed descrip-
tion, please see Materials and Methods in the Supplemen-
tary Materials.

RESULTS AND DISCUSSION
MEF: a multiple evidence fusion algorithmic framework
for predicting ADRs
We designed a multiple evidence fusion (MEF) algorithm for
predicting ADRs. The algorithm is based on the recommen-
der system using multiple evidence resources. Given a gold
standard set of drug–ADR associations, the basic idea
behind the method is: If a drug interacts with an ADR, other
drugs similar to the drug will be recommended to the ADR,
and vice versa. Thus, we computed a number of similarity
measures from different resources for drugs and ADRs, each
of which represents a kind of evidence. Given a query drug–
ADR pair, we made three aspects of recommendations (i.e.,
drug, ADR, and network) to determine whether this query
drug–ADR pair interacts or not. The score of each drug–
ADR pair according to each similarity measure allows us to
determine the likelihood that the query drug–ADR pair inter-

acts. The accumulated scores were finally fed into a learned
classifier that automatically weights different scores to yield a
classification outcome. The algorithm works in three succes-
sive steps (Figure 1): I) construction of drug–drug and ADR–
ADR similarity measures from different evidence; II) applying
the collaborative filtering algorithm to construct classification
features based on these similarity measures, and subse-
quent learning of a classifier which distinguishes true from
false drug–ADR associations; III) applying the classifier to
predict new drug–ADR associations.

Assembly of drug–ADR interaction data and evidence
resources
We extracted 24,803 drug–ADR interactions from the 2009
SIDER data snapshot as our training set. A total of 746
drugs and 817 ADRs were involved in the extracted interac-
tions (Figure 2). This network had 24,803 edges and
584,679 nonedges (proportion of edges in the training set:
4.07%). In the drug–ADR network, each ADR was mapped
to the medical dictionary for regulatory activities (MedDRA,
v. 16.0) and the unified medical language system (UMLS).
Each drug was mapped to different domain-related levels
including chemical structure, World Health Organization
anatomical therapeutic chemical (ATC) classification sys-
tem, target proteins, and various phenotypes.

Integrating the drug-related data from different data-
bases, we assembled eight drug–drug similarity measures
between the 746 drugs. Likewise, we constructed five
ADR–ADR similarity measures between the 817 ADRs by
integrating the ADR-related data from MedDRA and UMLS.
These similarity measures totally derive from node attrib-
utes (i.e., drug or ADR representations), which greatly rely
on the specific domain knowledge. We therefore called
them node attribute-based similarity measures. Additionally,
we defined three similarity measures and one preferential
attachment score in terms of various topological character-
istics of the drug–ADR network graphs. For convenience,
we called them the network structure-based similarity
measures.

Construction of classification features from multiple
resources
We generated one classification feature for each similarity
measure using the collaborative filtering algorithm, as
described in the Methods section. Each feature represents
a kind of evidence that allows us to infer novel drug–ADR
associations. A total of 20 classification features were con-
structed, including eight drug-related features, five ADR-
related features, and seven network-related features. The
knowledge from the systematic levels, such as the molecu-
lar, cellular, individual, and network levels, represents multi-
ple evidence features to generate a general assumption
based on systems pharmacology.24–28

In a set of preliminary investigations, we individually
checked the contribution of each feature to classification
performance, and then evaluated the information overlap
between the evidence. We show that each evidence fea-
ture has a moderate predictive ability, and the area under
the receive operating characteristic curve (AUC) ranges
from 0.57 to 0.88 (Figure 3 and Table S1). Network
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structure-based features obtain the best performance as a
whole. The best prediction is obtained by ANN and DNN
(ANN: 0.88, DNN: 0.87), representing the structural equiva-
lence in the drug–ADR network. The next is AKatz and
DKatz (AKatz: 0.82, DKatz: 0.78), which consider the path
length in the drug–ADR network. Among node attribute-
based features, the best drug-related and ADR-related fea-
tures are ATC and Coexist, resulting in AUCs of 0.77 and
0.84, respectively. However, it should be noted that the
information in some evidence sources is incomplete
because it is hard to find the complete information for
some drugs or ADRs (Table S2). Thus, the prediction does

not totally reflect the true contribution to each kind of evi-
dence. For instance, only 45% of drugs could obtain gene
expression responses from the Connectivity Map, and only
46% ADRs could obtain ADR-causing proteins from Kuhn
et al.’s work. Maybe the addition of the lost information for
the evidence will continue to improve the prediction per-
formance. To investigate the information overlap between
the evidence, we first calculated their correlation for drugs
and ADRs, respectively (Figures S2, S3 and Tables S3,
S4). The similarity values between drugs and drugs or
ADRs and ADRs are relatively low, illustrating the differ-
ence of the evidence collected from drugs or ADRs. In

Figure 1 Illustration of MEF algorithm. By integrating multiple evidence resources, we computed a number of similarity measures for
drugs and ADRs, including node attribute-based and network-based similarity. Given a query drug–ADR pair, we made three aspects
of recommendations (i.e., drug-related, ADR-related, and network-related), based on collaborative filtering recommendation systems, to
determine whether this query drug–ADR pair interacts or not. The score of each drug–ADR pair according to each similarity measure
allows us to determine the likelihood that the query drug–ADR pair interacts. The accumulated scores were finally fed into a learned
classifier that automatically weights different scores to yield a classification outcome.
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order to further verify the situation, we next checked the
accurately predicted associations from each kind of evi-
dence (Figure S4 and Table S5). Although the prediction
accuracies from some evidence are similar, we found that
the accurately predicted associations are different, indicat-
ing that different evidence preferred different drug–ADR
associations. To a certain extent, integrating multiple evi-
dence features should yield better performance. In sum-

mary, these observations are not perfectly predictive, but
they adjust probabilities. This is all that our method
requires, because the goal is simply to classify drug–ADR
pairs on the basis of higher and lower aggregate probabil-
ities. By combining different evidence signals in these data-
sets with the existing model favoring drug–ADR pairs for
which we have more evidence, we can predict the ADRs
more reliably.

Figure 2 Drug–ADR interaction network. To clearly visualize the network relationships between drugs and ADRs, the drugs with the
same top ATC level were bundled together, while the ADRs with the same top SOC level were bundled together, using an edge bun-
dling technique. The length of the bars of the ATC levels on the outer ring represented the percentage of SOC levels at each ATC
level, and vice versa. From this figure, nervous system agents have a wide range of ADRs, covering most of SOC categories. Signifi-
cantly, nervous system agents usually cause nervous system disorders. Cardiovascular drugs usually cause cardiac disorders. The
drugs applied to sensory organs usually lead to eye disorders.
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Training and validating a random forest classifier
We next investigated whether the combination of multiple
evidence features improved the prediction accuracy or not.
We trained a random forest (RF) classifier in all 20 features
using a 10-fold cross-validation setting. Here, 1,000 classifi-
cation trees are grown to construct the RF classifier. To
avoid easy prediction cases, we hid all the associations
involved with 10% of the drugs or the ADRs in each fold,
rather than hiding 10% of the associations. The resulting
models yielded AUC scores of 0.97 6 0.01 for drug-based

cross-validation, and the same AUC scores of 0.97 6 0.01
for ADR-based cross validation. The RF models correctly
classified about 91.6% of the associations, with a sensitivity
of 93.4% and specificity of 89.8%. We noted that no single
feature obtained these high AUCs: the highest AUC of 0.88
was obtained using the ANN feature; removing each feature
had a marginal effect on the overall AUC (<0.03). Distinct
data sources complement each other in the prediction of
ADRs since the coverage of each feature is incomplete and
the overlap between different features is low (Figures S2–
S4). By integrating these features where available, we
improved the coverage of drug–ADRs interactions com-
pared to a single feature.

Network features vs. node features
We investigated the use of node attribute-based features
and network-based features in the model. By individually
training RF classifiers based on two feature sets, we
obtained their prediction performance using the same vali-
dation strategy. The RF models using node attributes and
network features obtained AUCs of 0.91 6 0.01 and
0.96 6 0.01, respectively (Figure 4a). The prediction from
network features is significantly better than that from node
attributes, indicating the potential ability of network informa-
tion in predicting ADRs. For all this, a part of accurately
predicted drug–ADR associations for two types of features
are different (Figure 4b), illustrating that different types of
features preferred different drug–ADR associations again.
By combining them into a RF model, reassuringly, the pre-
diction performance again improved, although this improve-
ment was relatively low.

Drug- and ADR-specific prediction performance
In order to investigate any potential variation in perform-
ance according to drug and ADR, we carried out a second
evaluation. For this evaluation, we generated different

Figure 3 The ROC curves and the AUCs of 20 classification fea-
tures from different evidence sources.

Figure 4 (a) The ROC curves and the AUCs using node features and network features, respectively. (b) Venn diagram for MEF predic-
tions using node features, network features, and their combinations.

Integrating Multiple Evidence Sources to Predict Adverse Drug Reactions
Cao et al.

503

www.wileyonlinelibrary/psp4



level-specific validation sets and, for each set, computed an
AUC statistic on the basis of prediction probabilities. First,
we generated 14 ATC top-level validation sets and 24 Med-
DRA top-level validation sets for drugs and ADRs, respec-
tively. Drug-specific AUCs were plotted; with drugs grouped
according to the ATC top-level categories (Figure S5 and
Table S6). For all the drugs, the AUC scores were above
0.95, and mean AUC scores did not vary much across drug
ATC categories. There are two groups for which the model
produced AUC scores above 0.975, such as dermatological
and sensory organs. The prediction precisions of 13 ATC
categories are above 0.85, except antiparasitic products
(Figure S6 and Table S6). ADR-specific AUCs were also
plotted for MedDRA top-level groups (Figure S7 and
Table S8). For most of ADRs, the AUC scores were above
0.97. Congenital, familial, and genetic disorders got the
best AUC score of 0.99. The prediction precisions of 23
MedDRA top-level groups were above 0.85, except preg-
nancy, puerperium, and perinatal conditions (Figure S8
and Table S7).

To make a further validation, we generated all 746 drug-
specific validation sets and 817 ADR-specific validation
sets for drugs and ADRs, respectively. The plots of drug-
specific or ADR-specific AUCs against each drug or each
ADR are provided (Figure S9 and Tables S8, S9). On the
whole, the prediction of each drug or each ADR is relatively
satisfactory. For drugs, there are 174 drugs for which the
model produced a very high AUC score (>0.99). There are
also a small number of drugs for which the model produced
a small AUC score, including oxandrolone (0.73), prazi-

quantel (0.84), amrinone (0.84), and rifabutin (0.87). Like-
wise, there were 283 examples of ADRs for which the
model produced high AUC scores. Examples of ADRs for
which the model did not produce high AUC scores include
perirectal abscess (0.78) and infestation (0.79). The predic-
tion from multiple levels demonstrated the reliability and
robustness of our proposed algorithm.

Analysis of novel predictions
In order to predict novel drug–ADR pairs, we scanned the
entire drug–ADR associations systematically. We found a
significant enrichment of drug–ADR associations according
to prediction probabilities. By using alternative score thresh-
olds, our method may be tuned to predict a subset of drug–
ADR pairs with high likelihood at the cost of false discovery
rate (FDR). We can estimate our FDR from the precision-
recall curve (Figure S10). To trade off precision and recall,
we chose a cutoff that corresponds to 30% recall, which
has an RF prediction probability of 0.95. At this cutoff, pre-
cision is about 99% when recall is 30%, and therefore we
estimate our FDR to be about 1%. In other words, at this
cutoff (RF >0.95), on the training set, we capture 30% of
the drug–ADR interactions. Based on this threshold, we
predict 18,629 drug–ADR interactions in the total screening
set, and 2,536 new drug–ADR interactions after excluding
those appearing in the training set (Table S10). We expect
about 2,510 of these associations to be true drug–ADR
interactions. These associations only take up 0.39% of all
cross-linking associations. Further analysis found that
nearly 373 drug–ADR pairs have scores above 0.99, sug-
gesting that there are many potential candidate drug–ADR
pairs with a relatively high likelihood.

We checked open ADR-related databases, and confirmed
some drug–ADR interactions supported our predictions.
Among the 2,536 predicted associations, about 70.5% were
successfully validated from two databases (SIDER and OFF-
SIDES). Subsequent targeted survey revealed that 11.24%
of our predictions were approved in the SIDER database.
63.52% of our predictions were previously reported as
potential ADRs in the OFFSIDES database, although they
are not approved yet, corroborating the predictive power of
our proposed method. In all, 108 associations related to 73
drugs are commonly confirmed by two databases, whose
prediction scores are in the range of 0.95–1.00. Table 1 lists
the 24 predicted associations related to six drugs and their
corresponding scores. For example, ibuprofen, a prototypical
nonsteroidal antiinflammatory agent with analgesic and anti-
pyretic properties, obtained an AUC score of 0.96 6 0.016
and prediction precision of 0.94 6 0.024 based on drug-
related prediction (Table S8). We detected 30 novel asso-
ciations, 15, 2, and 6 of which have been identified by
OFFSIDES, SIDER, and two databases, respectively. More-
over, six predicted associations are still unidentified, imply-
ing that they could be novel potential ADRs (Table S10).
Goserelin, a synthetic hormone, obtained an AUC score of
0.96 6 0.016, and prediction precision of 0.89 6 0.025.
Among the 15 predicted associations by our method, all
have been successfully identified, five of which are com-
monly confirmed by two databases. In summary, the large
overlap (70.5%) between our predictions and those reported

Table 1 The 24 predicted associations associated with six drugs and their

corresponding scores

Drug names ADRs Scores

Ibuprofen Bronchitis 0.998

Peripheral edema 0.990

Dysphagia 0.990

Gastroenteritis 0.998

Hypokalemia 0.986

Sinusitis 0.974

Goserelin Breast tenderness 0.960

Cyst 0.988

Pulmonary embolism 0.998

Acne 0.958

Cystitis 0.952

Prednisone Cardiomegaly 0.996

Vasculitis 0.974

Thrombophlebitis 0.982

Diabetes mellitus 0.962

Phenytoin Diabetes mellitus 0.998

Aspiration pneumonia 0.990

Liver function tests abnormal 0.996

Atenolol Weight gain 0.964

Pneumonia 0.984

Erythema multiforme 0.962

Methylprednisolone Vasculitis 0.976

Neuropathy 0.982

Cardiomyopathy 0.984
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demonstrates that our proposed method effectively predicts
new potential drug–ADR interactions that are still not deter-
mined from clinical trials.

In conclusion, in the present study we proposed an MEF
algorithmic framework for predicting unknown drug–ADR
associations by integrating multiscale evidence sources.
The proposed model achieved high rates of specificity and
sensitivity in cross-validation. When all features are inte-
grated into a model, we attained a higher AUC of 0.97, sur-
passing existing methods. Applying the model to the
screening of new associations, we confirmed about 70.5%
associations by looking up the databases. Our findings sug-
gest that MEF could be useful for predicting future reported
drug–ADR relationships.

We compared our current study with three previous stud-
ies with similar but intrinsically different ideas. Those stud-
ies and the current study are similar in that they integrate
various types of information, and all are similarity-based
inference processes for classification or clustering.29–33

Compared to the method proposed by Gottlieb et al.,34,35

the current study used two types of features—node
attributes (drug attributes and ADR attributes), network
structure—whereas Gottlieb et al. only used node attribute-
based information, and did not include the network-based
information. Additionally, the similarity-based inference pro-
cess is totally different. The current study used collabora-
tive filtering to generate recommendation scores as
classification features, and therefore help the transparent
interpretation of drug-specific or ADR-specific information,
while Gottlieb et al. used the pairwise similarity-based infer-
ence scheme to generate classification features, which are
not easily interpretable. Compared to the pharmacological
network models proposed by Cami et al.,11 the current
study proposed a flexible computational framework to inte-
grate arbitrary similarity measures from multiple sources,
while Cami et al. directly generated several covariates as
classification features by covariate definitions. Currently,
Wang et al. proposed a similarity fusion network model for
identifying cancer subtypes and predicting survival.36 This
method is inspired by the theoretical multiview learning
framework developed for computer vision and image proc-
essing applications, while our method is inspired by the rec-
ommendation systems developed for various electronic
commerce applications. Furthermore, collaborative matrix fac-
torization methods were also developed for drug repositioning
studies by integrating multiple aspects of similarities.32,33

The main limitations of our proposed approach are sum-
marized as follows: I) When network features are included,
our proposed approach can only be applied to detect new
interactions for a drug or an ADR for which at least one
interaction has already been established. When predicting
new drugs or ADRs with no prior interaction data, we sug-
gest applying drug features and ADR features to construct
the classification model, and then make predictions. II) A
limitation of our method in predicting ADRs is that it does
not take into consideration genetic risk factors of some
ADRs. This information is crucial for determining whether
an interaction will take place in clinical reality or not. Never-
theless, this situation should be taken into account by the
physician in each case individually.

We suggest that our predictions may be beneficial in
three areas: I) drug development, especially postmarketing
surveillance, aiding in assessment and verification of poten-
tial ADRs; II) driving and directing early focus of potentially
serious ADRs and cost reduction of large-scale clinical tri-
als; III) assisting in discovery of new mechanisms of drugs
by recognizing the group of ADRs targeted by a particular
drug, especially in solving problems related to drug reposi-
tioning, drug-target selectivity, and polypharmacology.
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