Enables systematic, dependency-aware scenario exploration for group sequential designs created by gsDesign. gsDesignTune is built for design-space evaluation (ranking, filtering, Pareto trade-offs) rather than claiming a single “optimal design”. With a focus on user experience, correctness, and speed, it supports off-the-shelf parallel processing with progress tracking, caching, and reproducible reporting.
Installation
You can install the development version of gsDesignTune from GitHub with:
# install.packages("pak")
pak::pak("nanxstats/gsDesignTune")Features
- Drop-in workflow: replace
gsDesign()/gsSurv()/gsSurvCalendar()withgsDesignTune()/gsSurvTune()/gsSurvCalendarTune(), then$run(). - Dependency-aware tuning: express design parameter dependency relationships precisely, for example, spending functions and their spending parameters.
- Grid and random search over candidate sets, with vector-valued arguments treated atomically.
- Parallel evaluation via {future} / {future.apply} with progress via {progressr}. Use any {future} backend that fits your infrastructure.
- Reproducible and auditable results: per-configuration warnings/errors and reconstructable underlying call.
- Optional caching of design objects to disk and HTML reporting via {rmarkdown}.
Quick start
Evaluate time-to-event designs:
library(gsDesign)
library(gsDesignTune)
library(future)
plan(multisession, workers = 2)
job <- gsSurvTune(
k = 3,
test.type = 4,
alpha = 0.025,
beta = 0.10,
timing = tune_values(list(c(0.33, 0.67, 1), c(0.5, 0.75, 1))),
hr = tune_seq(0.55, 0.75, length_out = 5),
upper = SpendingFamily$new(
SpendingSpec$new(sfLDOF, par = tune_fixed(0)),
SpendingSpec$new(sfHSD, par = tune_seq(-4, 4, length_out = 9))
),
lower = SpendingSpec$new(sfLDOF, par = tune_fixed(0)),
lambdaC = log(2) / 6,
eta = 0.01,
gamma = c(2.5, 5, 7.5, 10),
R = c(2, 2, 2, 6),
T = 18,
minfup = 6,
ratio = 1
)
job$run(strategy = "grid", parallel = TRUE, seed = 1, cache_dir = "gstune_cache")
res <- job$results()
head(res)
job$best("final_events", direction = "min")
job$pareto(metrics = c("final_events", "upper_z1"), directions = c("min", "min"))
job$plot(metric = "final_events", x = "hr", color = "upper_fun")
job$report("gstune_report.html")Tune specifications
-
tune_fixed(x): explicit fixed value (useful inside dependencies) -
tune_values(list(...)): explicit candidates (supports vector-valued candidates) -
tune_seq(from, to, length_out),tune_int(from, to, by) -
tune_choice(...): categorical choices -
tune_dep(depends_on, map): dependent mapping for any argument
See vignettes for end-to-end examples, spending function tuning, and parallel + reproducible reporting.