Skip to contents

Print enpls.od object.

Usage

# S3 method for class 'enpls.od'
print(x, ...)

Arguments

x

An object of class enpls.od.

...

Additional parameters for print.

See also

See enpls.od for outlier detection with ensemble partial least squares regressions.

Author

Nan Xiao <https://nanx.me>

Examples

data("alkanes")
x <- alkanes$x
y <- alkanes$y

set.seed(42)
od <- enpls.od(x, y, reptimes = 40)
od
#> Outlier Detection by Ensemble Partial Least Squares
#> ---
#> Mean residual for each sample:
#>   [1]  1.88619274 10.90589635  3.50508166  3.38765122  2.80640829  0.78893412
#>   [7]  2.52860922  0.03359353  1.55523763  0.48649170  0.43432626  0.60264392
#>  [13]  4.60743523  0.67644470  0.53639715  4.43822997  1.47247790  0.29597845
#>  [19]  1.79350103  2.18053241  0.17188372  0.11895953  2.41099045  0.35806773
#>  [25]  0.26331275  3.06233743  0.15693996  0.47571654  3.58846460  0.75389595
#>  [31]  2.50497874  0.18582900  0.58313578  0.19857068  0.93819095  1.30236929
#>  [37]  1.78072059  1.74212844  1.81681614  0.56607629  0.11198885  2.51452857
#>  [43]  0.95370707  2.29811304  1.92107913  1.25562046  1.43286292  2.09648342
#>  [49]  2.36905445  2.12219678  1.02728317  1.16916512  6.31964132  2.40059584
#>  [55]  1.48499676  0.90542576  3.08868401  3.91110096  0.95160646  0.07916320
#>  [61]  0.18462919  3.17758683 17.27644064  6.39155053  0.32285733  2.47408085
#>  [67]  2.70747954  0.41655958  1.69315765  1.50239800  0.10204587  1.15648225
#>  [73]  0.62900446  1.64331655  0.55503176  3.31420980  1.27605642  1.39046876
#>  [79]  2.23278137  1.51773588  0.20539385  0.33542097  6.67689517  0.58165439
#>  [85]  2.64143148  1.63360300  1.67683506  1.64568659  0.65114573  0.72723380
#>  [91]  1.04133381  4.38394410  0.97271337  3.13695344  7.43233908  2.09214321
#>  [97]  3.55130795  1.70256745  1.61429257  0.67112325  1.55760643  1.66972207
#> [103]  1.17502778  0.44144264  0.62612126  1.63479798  0.16358120  0.65135135
#> [109]  3.11193984  2.39647052  2.11746126  3.37532333  3.08305474  2.69521595
#> [115]  0.86578014  0.13498366  3.70654747  1.29143687  2.34495998  3.88766352
#> [121]  1.80232307  3.44598270  0.06232686  2.53641137  0.44721954  1.09185683
#> [127]  0.38141453  0.20658348  0.16049292  4.42702163  5.76809366  4.19214667
#> [133]  1.50250723  0.81938085  3.55811038  0.06429908  1.04534298  4.71816950
#> [139]  4.80303317  7.30939897  2.97319816  0.41884796  2.48666014  3.91764922
#> [145]  0.69902110  0.82941173  4.12322010  3.34525976  0.14185730  4.09483062
#> [151]  2.83445432  2.44515884  0.14714117  1.74312000 10.78168799  2.67905773
#> [157]  2.27492015  0.81146521  3.28294805  3.76191119  1.21226660  0.70449836
#> [163]  5.44513387  0.98019630  5.54076365  1.11716981 13.40151891  8.10166836
#> [169]  5.05451974  4.16001828  1.44731150  3.30748113  3.67192369  9.34781239
#> [175]  5.37195673  4.14563113  5.10334839  1.04458199  0.86669564  3.11206791
#> [181]  3.08644803  1.73851775  4.08310808  0.80871455  4.90638801  1.30481757
#> [187]  3.06970899  2.05049667  1.30072269  0.66595903  4.79211893  0.75554939
#> [193]  4.85263504  1.38490605  3.36337975  0.22302993 10.81017088  4.07946712
#> [199]  8.66505567  3.56557630  4.11653349  2.23784104  0.80040234  5.02267651
#> [205]  2.00460709  2.60222215  5.51750096
#> ---
#> Residual SD for each sample:
#>   [1] 3.3041016 3.7528097 0.6287911 1.9469013 1.1232235 0.5485301 1.4045617
#>   [8] 0.7522304 1.6296649 0.7087677 0.6081811 0.7877093 0.7357322 0.9403901
#>  [15] 0.5816742 0.5833505 0.2736066 0.4684476 0.5743993 0.6081003 0.3609794
#>  [22] 0.6143993 0.4156304 0.4969925 0.4222710 0.6887305 0.5441532 0.4896297
#>  [29] 0.9879193 0.4818513 0.7219000 0.7966308 0.5409247 0.2278245 0.6380086
#>  [36] 0.4632656 2.3365104 0.5400322 0.7725710 0.4365486 0.3134155 0.3446047
#>  [43] 0.3583251 1.1410511 0.3402650 0.4380000 0.9321529 0.6509107 0.7128634
#>  [50] 0.4828276 0.3868975 0.5957191 0.2625778 0.5127357 0.3956559 0.3615582
#>  [57] 0.4242556 0.5874111 0.5127348 0.6773799 0.4045032 0.3769534 0.4074678
#>  [64] 0.4403505 0.9213356 0.7140239 0.4342494 0.9126194 0.3348556 0.3009267
#>  [71] 0.3598233 0.6590692 0.6474388 0.5066233 1.4182923 0.4292809 1.2572876
#>  [78] 0.1624436 0.2101038 0.3498939 0.3325393 0.2033827 0.2622584 0.5774602
#>  [85] 0.3567808 0.2461149 0.2700110 0.5744636 0.5003152 0.3410442 0.3156831
#>  [92] 0.4918909 0.6209790 0.3658942 0.3441131 0.1515226 0.3688352 0.6401491
#>  [99] 0.3691702 0.3843657 0.4641710 0.4174310 0.3142639 0.5659825 0.6242340
#> [106] 0.4084429 0.6188155 0.4350521 0.3124214 0.9171589 0.6235125 0.8630642
#> [113] 0.5404761 0.8207514 1.0411927 0.5276077 0.7303770 1.0421700 0.8401458
#> [120] 1.2000292 0.9213492 0.3967389 0.3975921 0.7426849 0.8909864 1.5279479
#> [127] 0.6080130 0.4071117 0.6661871 0.3400878 0.5534629 2.5201942 0.8317301
#> [134] 0.6339794 0.5362687 0.3243553 0.8748678 0.3212679 0.8949716 2.2450596
#> [141] 0.5762151 0.6539516 0.3739754 0.6863370 0.6122660 0.2150478 0.2614764
#> [148] 0.6111684 0.3714130 1.1798078 0.4321432 0.5970870 0.9981701 0.4296940
#> [155] 1.2661150 0.5744207 0.5538887 1.3648434 0.9944283 1.3725367 0.6595768
#> [162] 0.4879736 0.5810827 0.8249397 0.7857057 0.9300459 0.8972485 0.9926545
#> [169] 1.0199147 4.5089205 1.1541768 0.8915807 0.6226884 1.2169453 0.4724696
#> [176] 0.6514313 0.5224253 0.6593973 0.1569680 0.5847442 0.5682814 0.6729592
#> [183] 0.1733294 0.3895711 0.6323498 0.4605052 0.1481093 1.1716547 0.5450096
#> [190] 0.5687975 0.5589908 0.2825736 0.6398288 0.7914032 0.8694980 0.3622459
#> [197] 0.5724749 0.7551469 0.4205248 0.2548245 0.6299627 0.7509742 0.2003678
#> [204] 0.7194789 0.4089175 0.7621391 0.4433501