Skip to contents

Print enpls.od object.

Usage

# S3 method for enpls.od
print(x, ...)

Arguments

x

An object of class enpls.od.

...

Additional parameters for print.

See also

See enpls.od for outlier detection with ensemble partial least squares regressions.

Author

Nan Xiao <https://nanx.me>

Examples

data("alkanes")
x <- alkanes$x
y <- alkanes$y

set.seed(42)
od <- enpls.od(x, y, reptimes = 40)
od
#> Outlier Detection by Ensemble Partial Least Squares
#> ---
#> Mean residual for each sample:
#>   [1]  1.92330900 10.89021255  3.27046898  3.44664155  2.78719736  1.00721093
#>   [7]  2.32621585  0.15516618  1.49258397  0.50951677  0.19598423  0.37894319
#>  [13]  4.43421626  0.48301514  0.46327275  4.53530921  1.58350187  0.22256084
#>  [19]  1.82285515  2.19105280  0.14492503  0.11669131  2.37152147  0.41554215
#>  [25]  0.24372355  3.03750326  0.11900180  0.49344478  3.58562713  0.75971852
#>  [31]  2.50370236  0.18596822  0.62717089  0.22202733  0.95571546  1.31467423
#>  [37]  1.69682775  1.75866125  1.74541520  0.59886200  0.15590344  2.52512176
#>  [43]  0.94597983  2.01631116  2.00243170  1.25466867  1.43118935  2.10773058
#>  [49]  2.37800560  2.09036202  1.08161933  1.18210080  6.31361052  2.38609257
#>  [55]  1.50573384  0.91316064  3.07453404  3.91117478  1.05337202  0.08206764
#>  [61]  0.19754492  3.19042773 17.31570083  6.37110043  0.40148348  2.38478712
#>  [67]  2.69960493  0.42132555  1.69524072  1.54012000  0.11009454  1.20152745
#>  [73]  0.65641423  1.61667859  0.68379966  3.31536455  1.22339435  1.41000966
#>  [79]  2.24609395  1.51285921  0.10342766  0.30636847  6.66882111  0.58845492
#>  [85]  2.63725148  1.65695792  1.63390152  1.61835598  0.57600256  0.72731511
#>  [91]  1.05198101  4.36533755  1.05663524  3.08473948  7.43305443  2.09063428
#>  [97]  3.55520392  1.65515761  1.61513447  0.63884967  1.58664742  1.67695751
#> [103]  1.27496896  0.40203138  0.50182230  1.63273307  0.14090982  0.65288976
#> [109]  3.11853398  2.36473487  2.11093608  3.53194269  3.08191944  2.69316941
#> [115]  0.90240623  0.02872732  3.70403651  1.29183732  2.23125273  3.85398723
#> [121]  1.84217151  3.66076738  0.10484361  2.54633226  0.46617427  1.16805320
#> [127]  0.39139204  0.16443923  0.08003652  4.42158712  5.73478695  4.16317725
#> [133]  1.49768800  0.84443803  3.48408280  0.04720127  1.15212362  4.71514260
#> [139]  4.78587567  7.08535845  3.01501307  0.28435017  2.45823906  3.83891306
#> [145]  0.74162634  0.81445493  4.13218270  3.24855964  0.14203270  4.18057865
#> [151]  2.78935621  2.43358909  0.15734928  1.74646711 11.01319565  2.62325287
#> [157]  2.24596141  0.82329103  3.26220014  3.77020529  1.18146477  0.75000697
#> [163]  5.42889310  0.97793800  5.53820064  1.10714760 13.35689245  8.10495666
#> [169]  5.08334965  3.59961335  1.44661616  3.31217366  3.63769784  9.21946333
#> [175]  5.36676320  4.14898335  5.07866592  1.06404762  0.85409149  3.01818476
#> [181]  3.09981869  1.82048171  4.08481150  0.81430555  4.86950932  1.30042868
#> [187]  3.04547591  2.36659361  1.30922974  0.67546767  4.83813159  0.76363716
#> [193]  4.85278793  1.42203141  3.29097215  0.22473577 11.03793378  4.04759625
#> [199]  8.66377110  3.56129270  4.11964350  2.27536705  0.79659843  5.18525972
#> [205]  2.02486439  2.61653055  5.50770355
#> ---
#> Residual SD for each sample:
#>   [1] 3.2833878 3.8273794 1.0560186 2.0025722 1.1289381 0.8097269 1.3784385
#>   [8] 0.7644119 1.7038686 0.6949922 0.6511539 0.8188688 0.7642990 0.9576901
#>  [15] 0.5493217 0.3829378 0.3262016 0.5612040 0.5585085 0.5914671 0.3469040
#>  [22] 0.6198233 0.3967101 0.4385455 0.4501116 0.6626386 0.5248715 0.4872178
#>  [29] 0.9541322 0.4900806 0.7301441 0.7965155 0.5781910 0.2309336 0.6417451
#>  [36] 0.4647038 2.4019232 0.5483285 0.8192984 0.4314438 0.3179872 0.3312354
#>  [43] 0.3733198 1.4769004 0.2945059 0.4482088 0.9344860 0.6220916 0.7005594
#>  [50] 0.4662778 0.4220982 0.6338109 0.2638589 0.5120856 0.4077683 0.3573461
#>  [57] 0.4410739 0.5874401 0.5968931 0.6777397 0.4197461 0.4003001 0.4686458
#>  [64] 0.4263087 1.0492434 0.7580662 0.4304740 0.9193812 0.3237159 0.3706392
#>  [71] 0.3702639 0.6251546 0.6000215 0.5021201 1.7171270 0.4327897 1.3029738
#>  [78] 0.1964857 0.1818725 0.3704031 0.3831923 0.2224975 0.2599175 0.5383308
#>  [85] 0.3500381 0.2374213 0.3201375 0.6122773 0.4425255 0.3409247 0.3270531
#>  [92] 0.4027017 0.6982817 0.4485474 0.3433372 0.1496763 0.3733111 0.6743161
#>  [99] 0.3734439 0.3823817 0.4611125 0.4078577 0.3041751 0.5314541 0.6941926
#> [106] 0.4185355 0.6356265 0.4368110 0.3118178 0.9631201 0.6241170 0.8467951
#> [113] 0.5370068 0.8182740 1.0267493 0.6014406 0.7439188 1.0417452 0.9159984
#> [120] 1.0912602 1.2090378 0.2448170 0.3614916 0.7161885 0.8897647 1.3832014
#> [127] 0.5998433 0.4049862 0.5840936 0.3372879 0.5792705 2.5575032 0.8360641
#> [134] 0.6016499 0.5772573 0.3279032 0.7315307 0.3090083 0.9269372 2.3859418
#> [141] 0.5067978 0.7311754 0.3569741 0.7275507 0.6003814 0.1884859 0.2617410
#> [148] 0.7306165 0.3746068 1.2490920 0.4336852 0.5923654 0.9873645 0.3988957
#> [155] 1.3101247 0.6287461 0.5560878 1.3617496 0.9841517 1.3764557 0.7021863
#> [162] 0.4625153 0.6237591 0.8036729 0.7978216 0.9488726 0.9800277 1.0070299
#> [169] 1.0055290 4.2708204 1.1540947 0.9365893 0.6317219 1.3354158 0.4766210
#> [176] 0.6604796 0.5105765 0.6308363 0.1133016 0.5834894 0.5800087 0.7344611
#> [183] 0.1725119 0.3842890 0.6562976 0.4601188 0.1435015 1.6094283 0.5524734
#> [190] 0.4649504 0.5169569 0.2957184 0.6396079 0.7796620 0.9774836 0.3619579
#> [197] 0.7784514 0.6964077 0.4218187 0.2469681 0.6395878 0.6537583 0.2377910
#> [204] 0.8467404 0.4538872 0.7481834 0.4360923